Tag your homework correctly on Ed. We will deduct points if not.

Extra credit for helping others on Ed

Plan project teams / idea / datasets

See FAQ online (if you're unsure about fit to course, talk to us) (teams of three/four highly recommended; will all be graded the same)

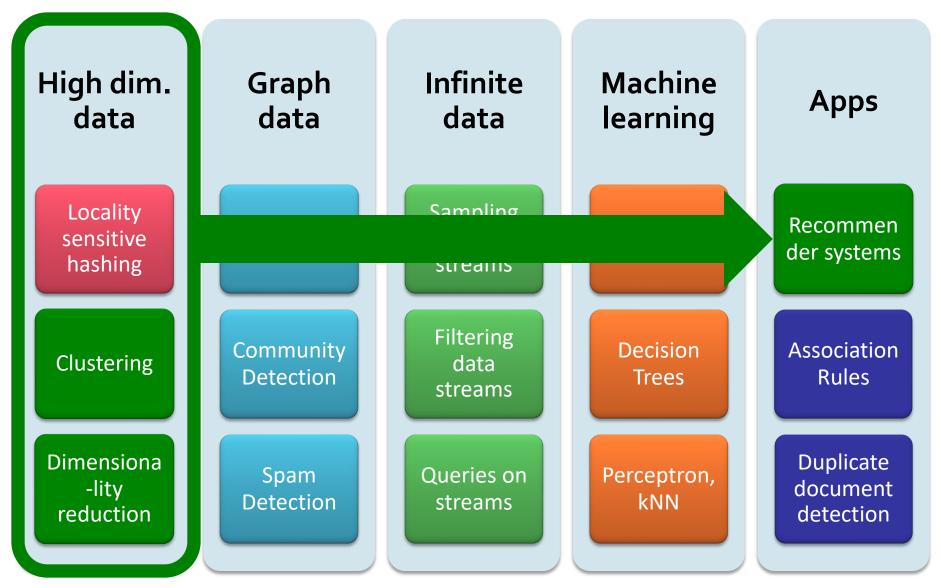
Due Thu: Tell us about your project using the Team Signup Sheet on our website

Office hours: Tim's are best for lecture questions, logistics, projects, accommodations; TA office hours are best for HW and colab questions (+project if TA assigned to you)

Clustering

CS547 Machine Learning for Big Data Tim Althoff PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

High Dimensional Data



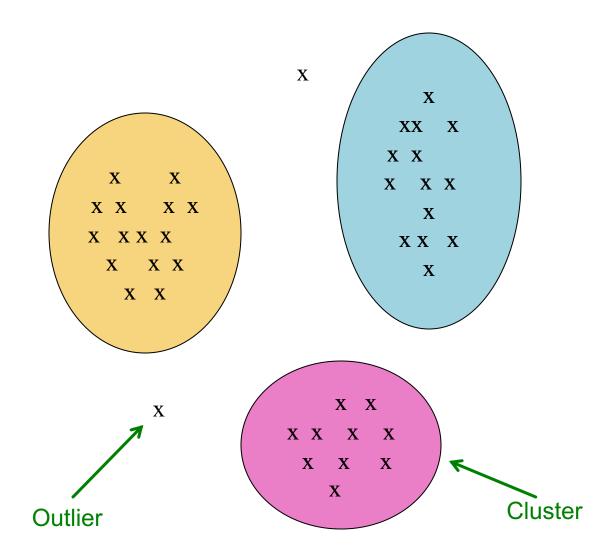
The Problem of Clustering

- Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that
 - Members of a cluster are close/similar to each other
 - Members of different clusters are dissimilar

Usually:

- Points are in a high-dimensional space
- Similarity is defined using a distance measure/metric
 - Euclidean, Cosine, Jaccard, edit distance, ...

Example: Clusters & Outliers



Clustering Problem: Galaxies

- A catalog of 2 billion "sky objects" represents objects by their radiation in 7 dimensions (frequency bands)
- Problem: Cluster similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Digital Sky Survey

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Clustering Problem: Music Album

- Intuitively: Music can be divided into categories, and customers prefer a few genres
 - But what are categories really?
- Represent an Album by a set of customers who bought it
- Similar Albums have similar sets of customers, and vice-versa

Clustering Problem: Music Album

Space of all Albums:

- Think of a space with one dim. for each customer
 - Values in a dimension may be 0 or 1 only
 - An Album is a "point" in this space (x₁, x₂,..., x_k), where x_i = 1 iff the ith customer bought the Album
- For Amazon, the dimension is 100 million plus

Task: Find clusters of similar Albums

Clustering Problem: Documents

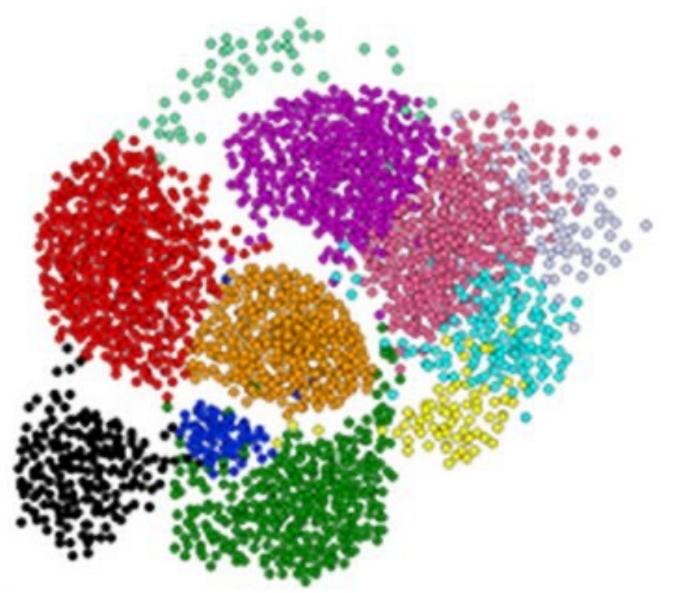
Finding topics:

- Represent a document by a vector (x₁, x₂,..., x_k), where x_i = 1 iff the *i* th word (in some order) appears in the document
- Documents with similar sets of words may be about the same topic

Cosine, Jaccard, and Euclidean

- We have a choice when we think of documents as sets of words or shingles:
 - Sets as vectors: Measure similarity by the cosine distance
 - Sets as sets: Measure similarity by the Jaccard distance
 - Sets as points: Measure similarity by Euclidean distance

Clustering is a hard problem!



Why is it hard?

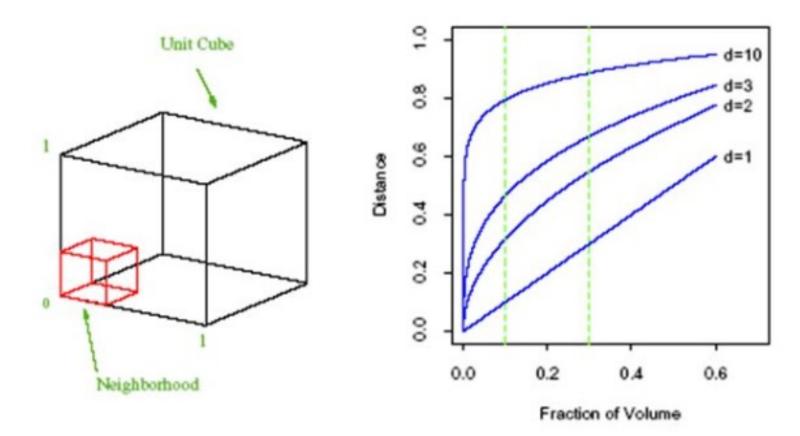
- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
- And in most cases, looks are not deceiving
- Many applications involve not 2, but 10 or 10,000 dimensions
- High-dimensional spaces "look different": Almost all pairs of points are very far from each other --> The Curse of Dimensionality

Example: Curse of Dimensionality

- Take 10,000 uniform random points on [0,1] line. Assume query point is at the origin (0).
- To get 10 nearest neighbors we must go to distance 10/10,000=0.001 on average
- In 2-dim we must go √0.001=0.032 to get a square that contains 0.001 volume
- In d-dim we must go $(0.001)\overline{d}$
- So, in 10-dim to capture 0.1% of the data we need 50% of the range.

Example: Curse of Dimensionality

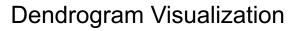
Curse of Dimensionality: All points are very far from each other

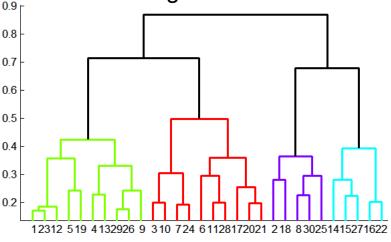


Overview: Methods of Clustering

Hierarchical:

- Agglomerative (bottom up): ^o
 - Initially, each point is a cluster
 - Repeatedly combine the two "nearest" clusters into one
- Divisive (top down):

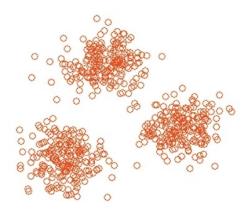


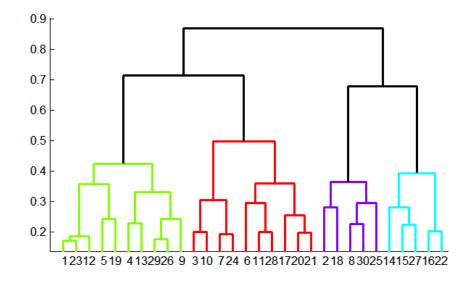


Start with one cluster and recursively split it

Point assignment:

- Maintain a set of clusters
- Points belong to the "nearest" cluster

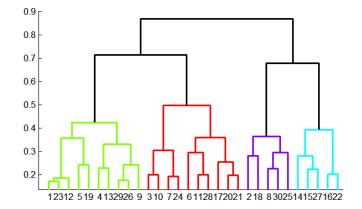




Hierarchical Clustering

Hierarchical Clustering

 Key operation: Repeatedly combine two nearest clusters



Three important questions:

- 1) How do you represent a cluster of more than one point?
- 2) How do you determine the "nearness" of clusters?
- **3)** When to stop combining clusters?

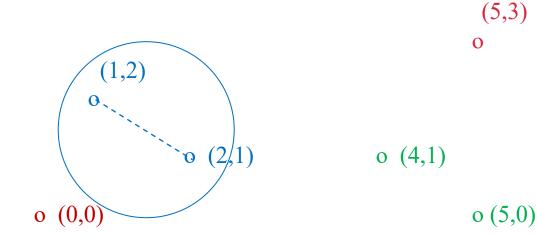
Which is Better?

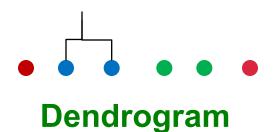
- Point assignment good when clusters are nice, convex shapes:
- Hierarchical can win when shapes are weird:
 - Note both clusters have essentially the same centroid.

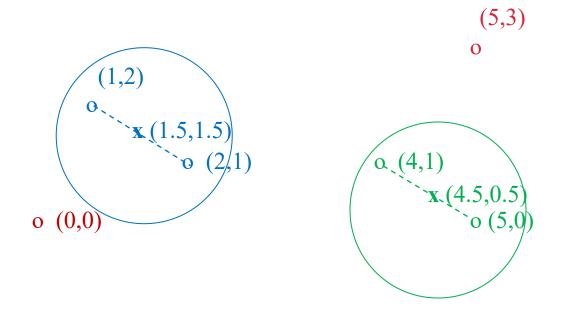
Note: if you realized you had concentric clusters, you could map points based on distance from center, and turn the problem into a simple, one-dimensional case.

Hierarchical Clustering

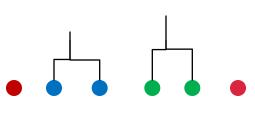
- Key operation: Repeatedly combine two nearest clusters
- (1) How to represent a cluster of many points?
 - Key problem: As you merge clusters, how do you represent the "location" of each cluster, to tell which pair of clusters is closest?
- Euclidean case: each cluster has a centroid = average of its (data)points
- (2) How to determine "nearness" of clusters?
 - Measure cluster distances by distances of centroids

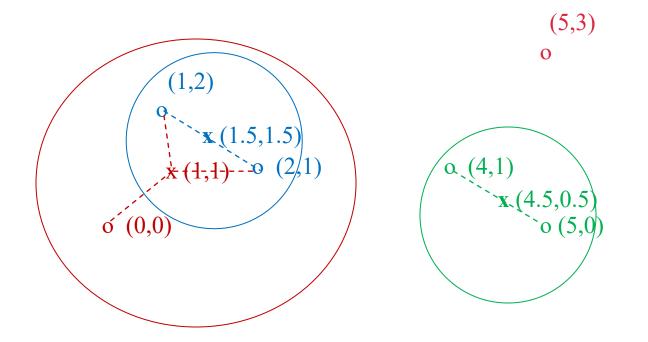




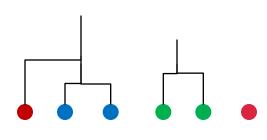


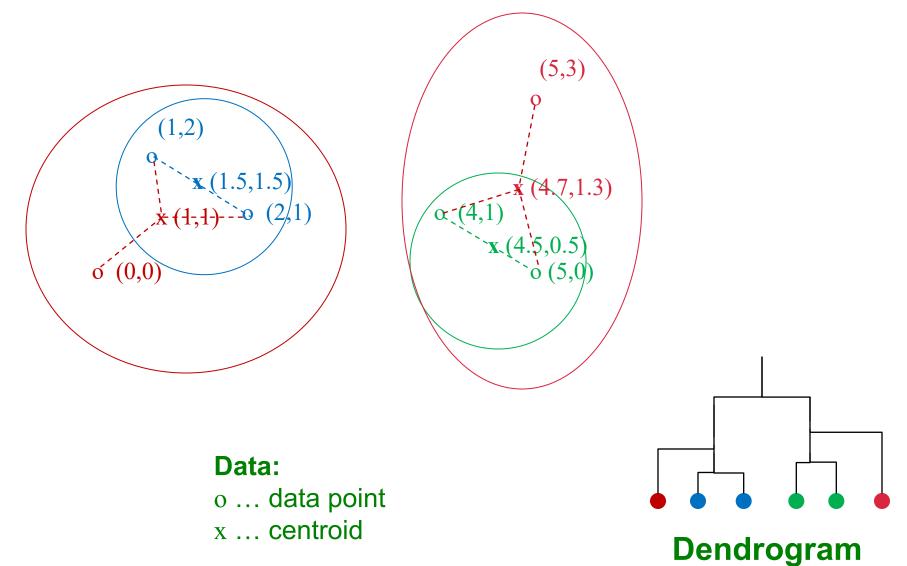
Data: o ... data point x ... centroid





Data: o ... data point x ... centroid





And in the Non-Euclidean Case?

What about the Non-Euclidean case?

- The only "locations" we can talk about are the points themselves
 - i.e., there is no "average" of two points (e.g. sets)

Approach 1:

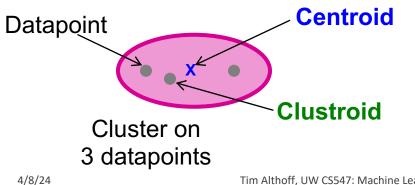
- (1.1) How to represent a cluster of many points?
 clustroid = (data)point "*closest*" to other points
- (1.2) How do you determine the "nearness" of clusters? Treat clustroid as if it were centroid, when computing inter-cluster distances

"Closest" Point?

(1.1) How to represent a cluster of many points? *clustroid* = point "*closest*" to other points Possible meanings of "closest":

- Smallest maximum distance to other points
- Smallest average distance to other points
- Smallest sum of squares of distances to other points

For distance metric *d* clustroid *c* of cluster *C* is $\arg\min\sum_{x\in C} d(x,c)^2$



Centroid is the avg. of all (data)points in the cluster. This means centroid is an "artificial" point. **Clustroid** is an **existing** (data)point that is "closest" to all other points in

Tim Althoff, UW CS547: Machine Learning for Big Data, http://thecs.Gluster.edu/cse547

Defining "Nearness" of Clusters

(1.2) How do you determine the "nearness" of clusters? Treat clustroid as if it were centroid, when computing intercluster distances.
Approach 2: No centroid, just define distance directly between clusters
Intercluster distance = minimum of the distances between any two points, one from each cluster

Cohesion

Approach 3: Pick a notion of cohesion of clusters

Merge clusters whose union is most cohesive

3.1: diameter of the merged cluster = maximum distance between points in the cluster

avg avg |{ • • }|

3.2: average distance

between points in the cluster

3.3: density-based approach

Take the diameter or avg. distance, and divide by the number of points in the cluster

When to stop?

When do we stop merging clusters?

- When some number k of clusters are found (assumes we know the number of clusters)
- When stopping criterion is met
 - Stop if diameter exceeds threshold
 - Stop if density is below some threshold
 - Stop if merging clusters yields a bad cluster
 - E.g., diameter suddenly jumps

Keep merging until there is only 1 cluster left

Which is Best?

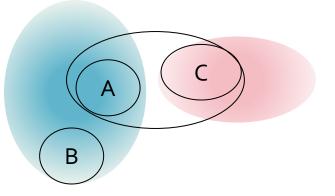
- It really depends on the shape of clusters.
 - Which you may not know in advance.

Which is Best?

- It really depends on the shape of clusters.Which you may not know in advance.
- **Example:** We'll compare two approaches:
 - 1. Merge clusters with smallest distance between centroids (or clustroids for non-Euclidean)
 - 2. Merge clusters with the smallest distance between two points, one from each cluster

Case 1: Convex Clusters

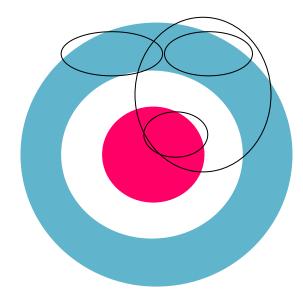
 Centroid-based merging works well.
 But merger based on closest members might accidentally merge incorrectly.

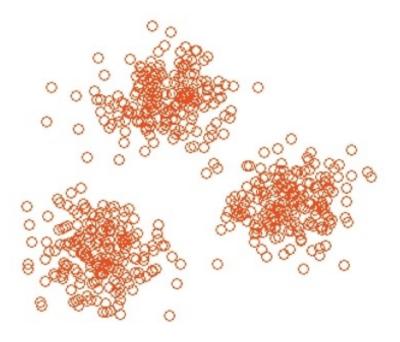


A and B have closer centroids than A and C, but closest points are from A and C.

Case 2: Concentric Clusters

- Linking based on closest members works well
- But Centroid-based linking might cause errors





k-means clustering

k-means Algorithm(s)

- Assumes Euclidean space/distance
- Start by picking k, the number of clusters
- Initialize clusters by picking one point per cluster
 - Example: Pick one point at random, then k-1 other points, each as far away as possible from the previous points
 - OK, as long as there are no *outliers* (points that are far from any reasonable cluster)

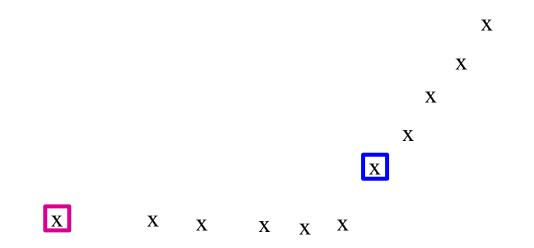
k-Means++

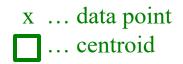
- Basic idea: Pick a small sample of points S, cluster them by any algorithm, and use the centroids as a seed
- In k-means++, sample size |S| = k times a factor that is logarithmic in the total number of points
- How to pick sample points: Visit points in random order, but the probability of adding a point p to the sample is proportional to $D(p)^2$.
 - D(p) = distance between p and the nearest picked point.

Populating Clusters

- I) For each point, place it in the cluster whose current centroid it is nearest
- 2) After all points are assigned, update the locations of centroids of the k clusters
- 3) Reassign all points to their closest centroid
 Sometimes moves points between clusters
- Repeat 2 and 3 until convergence
 - Convergence: Points don't move between clusters and centroids stabilize

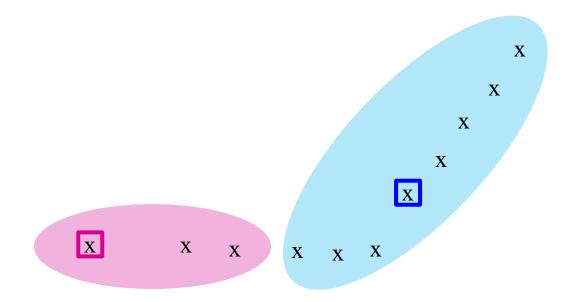
Example: Assigning Clusters

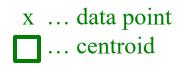




Clusters after round 1

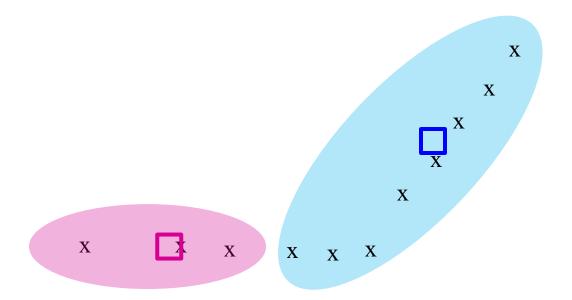
Example: Assigning Clusters

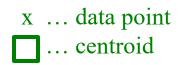




Clusters after round 1

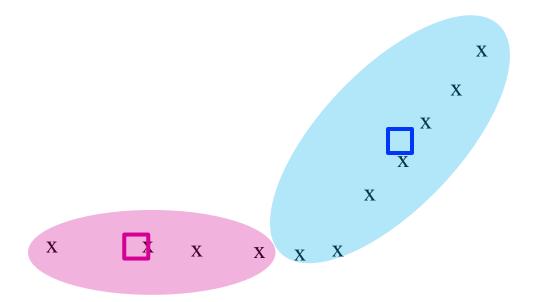
Example: Assigning Clusters

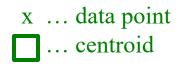




Clusters after round 2

Example: Assigning Clusters



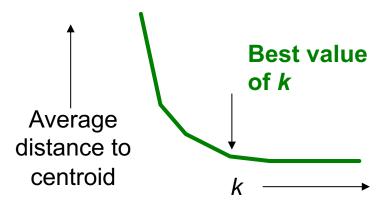


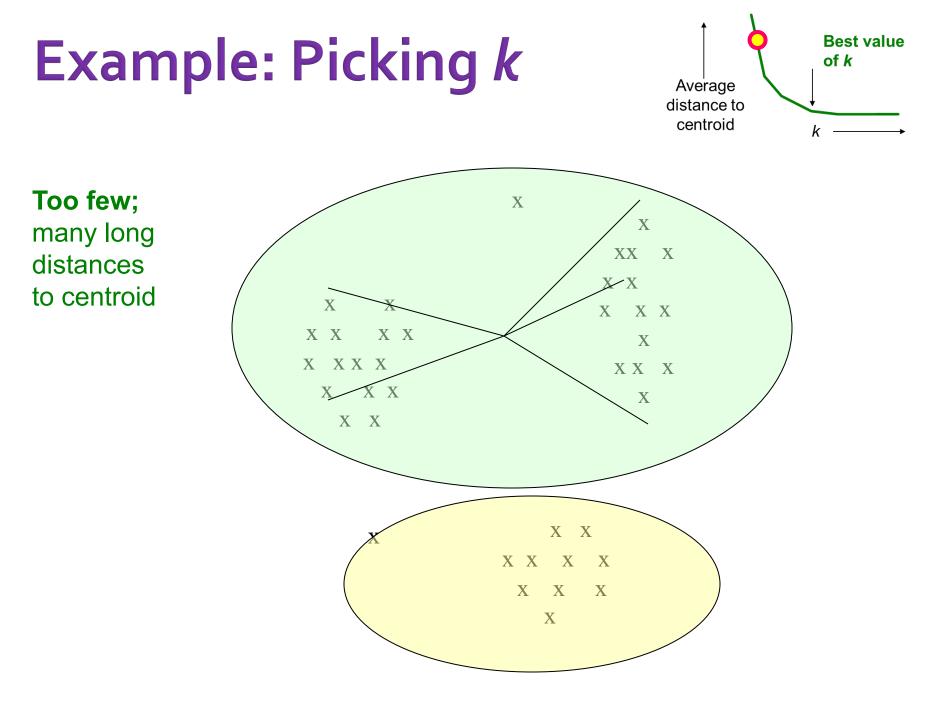
Clusters after round 2

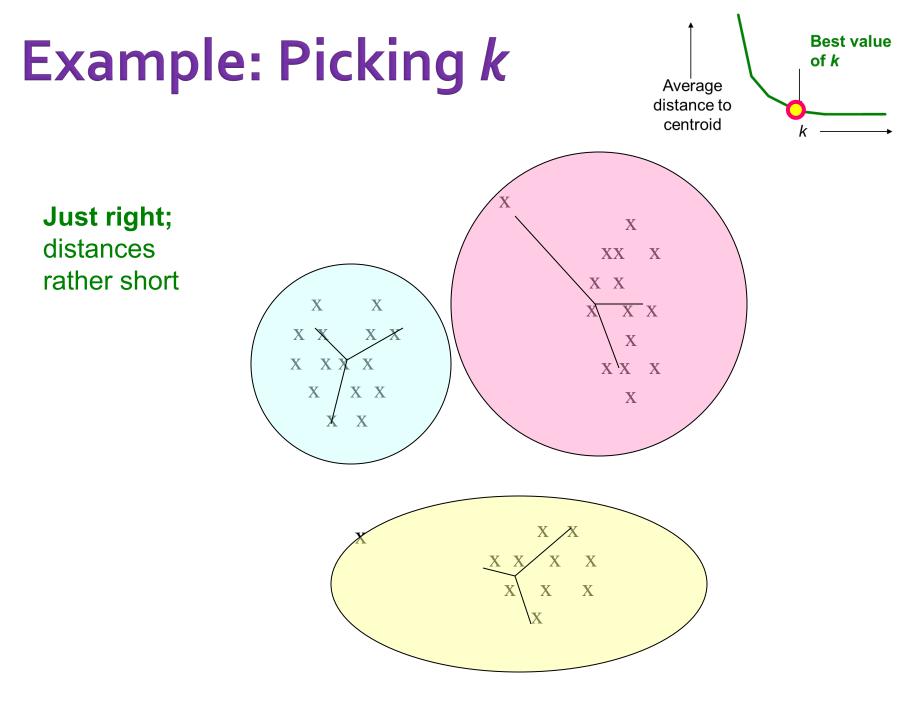
Getting the k right

How to select k?

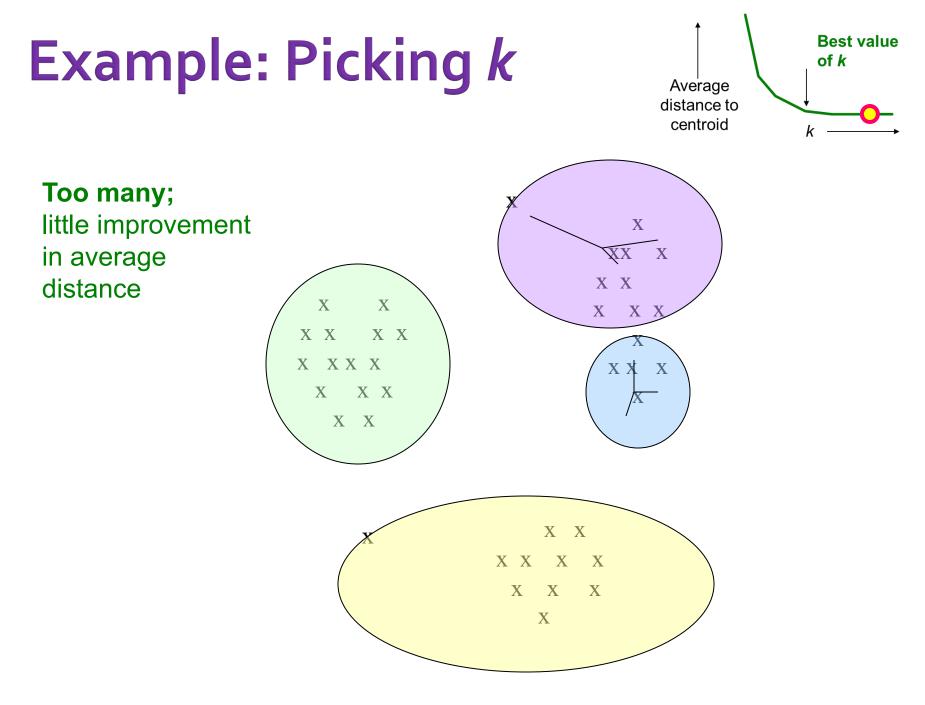
- Try different k, looking at the change in the average distance to centroid as k increases
- Average falls rapidly until right k, then changes little







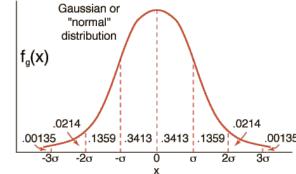
4/8/24



Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

The BFR Algorithm

BFR Algorithm



- BFR [Bradley-Fayyad-Reina] is a variant of k-means designed to handle very large (disk-resident) data sets
- Assumes that clusters are normally distributed around a centroid in a Euclidean space
 - Standard deviations in different dimensions may vary
 - Clusters are axis-aligned ellipses
- Goal is to find cluster centroids; point assignment can be done in a second pass through the data.

BFR Overview

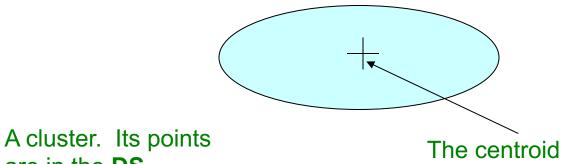
- Efficient way to summarize clusters: Want memory required O(clusters) and not O(data)
- IDEA: Rather than keeping points, BFR keeps summary statistics of groups of points
 - 3 sets: Cluster summaries, Outliers, Points to be clustered
- Overview of the algorithm:
 - 1. Initialize K clusters/centroids
 - **2.** Load in a bag of points from disk
 - **3.** Assign new points to one of the K original clusters, if they are within some distance threshold of the cluster
 - **4.** Cluster the remaining points, and create new clusters
 - 5. Try to merge new clusters from step 4 with any of the existing clusters
 - 6. Repeat steps 2-5 until all points are examined

BFR Algorithm

- Points are read from disk one main-memoryfull at a time
- Most points from previous memory loads are summarized by simple statistics
- Step 1) From the initial load we select the initial k centroids by some sensible approach:
 - Take k random points
 - Take a small random sample and cluster optimally
 - Take a sample; pick a random point, and then
 k-1 more points, each as far from the previously selected points as possible

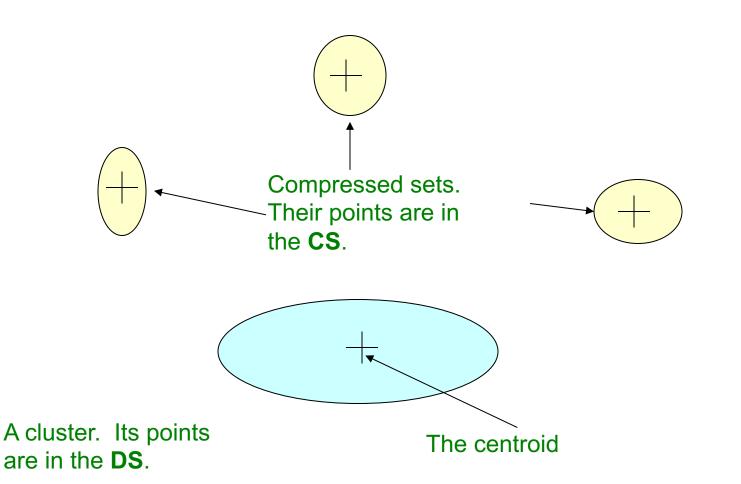
Three Classes of Points

- 3 sets of points which we keep track of:Discard set (DS):
 - Points close enough to a centroid to be summarized
- Compression set (CS):
 - Groups of points that are close together but not close to any existing centroid
 - These points are summarized, but not assigned to a cluster
- Retained set (RS):
 - Isolated points waiting to be assigned to a compression set

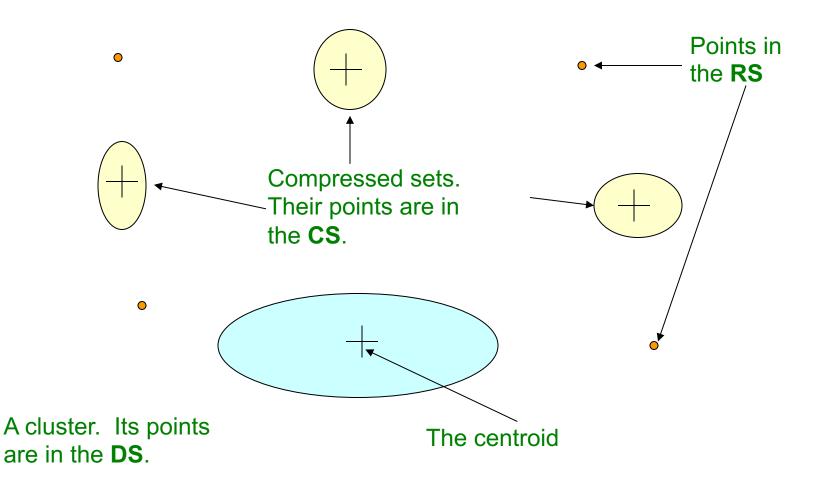


are in the **DS**.

Discard set (DS): Close enough to a centroid to be summarized Compression set (CS): Summarized, but not assigned to a cluster Retained set (RS): Isolated points



Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

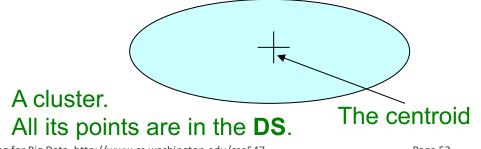


Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

Summarizing Sets of Points

For each cluster, the discard set (DS) is <u>summarized</u> by:

- The number of points, N
- The vector SUM, whose ith component is the sum of the coordinates of the points in the ith dimension
- The vector SUMSQ: ith component = sum of squares of coordinates in ith dimension



Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Summarizing Points: Comments

- 2d + 1 values represent any size cluster
 - *d* = number of dimensions
- Average in each dimension (the centroid) can be calculated as SUM_i / N
 - SUM_i = ith component of SUM
- Variance of a cluster's discard set in dimension *i* is: (SUMSQ_i / N) – (SUM_i / N)²
 - And standard deviation is the square root of that

Next step: Actual clustering

Note: Dropping the "axis-aligned" clusters assumption would require storing full covariance matrix to summarize the cluster. So, instead of **SUMSQ** being a *d*-dim vector, it would be a *d x d* matrix, which is too big!

The "Memory-Load" of Points

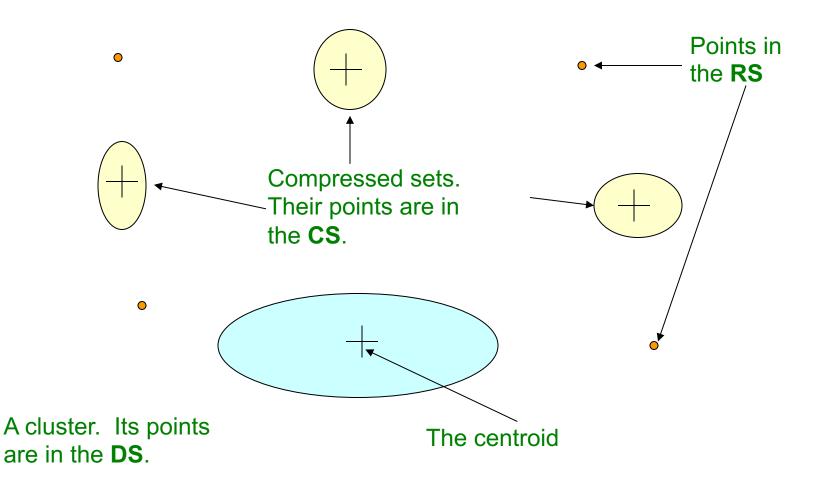
- Steps 3-5) Processing "Memory-Load" of points:
 Step 3) Find those points that are "sufficiently close" to a cluster centroid and add those points to that cluster and the DS
 - These points are so close to the centroid that they can be summarized and then discarded
- Step 4) Use any in-memory clustering algorithm to cluster the remaining points and the old RS
 - Clusters go to the CS; outlying points to the RS

Discard set (DS): Close enough to a centroid to be summarized. **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

The "Memory-Load" of Points

- Steps 3-5) Processing "Memory-Load" of points:
 Step 5) DS set: Adjust statistics of the clusters to account for the new points
 - Add Ns, SUMs, SUMSQs
 - Consider merging compressed sets in the CS
- If this is the last round, merge all compressed sets in the CS and all RS points into their nearest cluster

Discard set (DS): Close enough to a centroid to be summarized. **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points



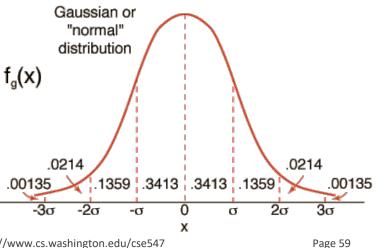
Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

A Few Details...

- Q1) How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?
- Q2) How do we decide whether two compressed sets (CS) deserve to be combined into one?

How Close is Close Enough?

- Q1) We need a way to decide whether to put a new point into a cluster (and discard)
- BFR suggests two ways:
 - The Mahalanobis distance is less than a threshold
 - High likelihood of the point belonging to currently nearest centroid



Mahalanobis Distance

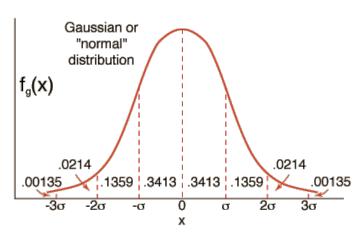
- Normalized Euclidean distance from centroid
- For point $(x_1, ..., x_d)$ and centroid $(c_1, ..., c_d)$
 - 1. Normalize in each dimension: $y_i = (x_i c_i) / \sigma_i$
 - 2. Take sum of the squares of the y_i
 - 3. Take the square root

$$d(x,c) = \sqrt{\sum_{i=1}^{d} \left(\frac{x_i - c_i}{\sigma_i}\right)^2}$$

 σ_i ... standard deviation of points in the cluster in the *i*th dimension

Mahalanobis Distance

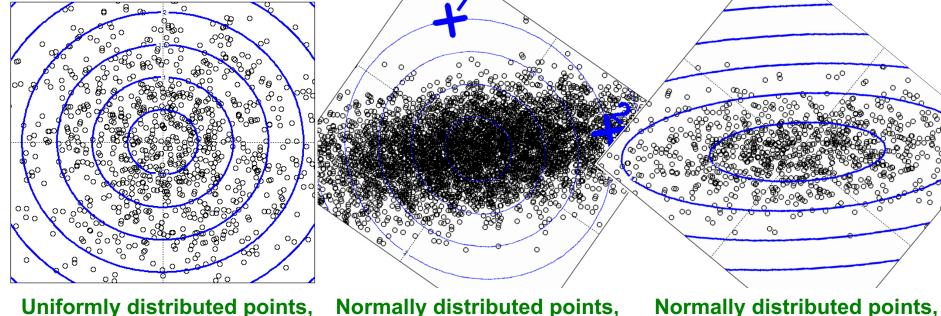
- If clusters are normally distributed in ddimensions, then after transformation, one standard deviation => Distance \sqrt{d}
 - i.e., 68% of the points of the cluster will have a Mahalanobis distance $<\sqrt{d}$
- Accept a point for a cluster if its M.D. is < some threshold, e.g. 2 standard deviations



Picture: Equal M.D. Regions

Euclidean vs. Mahalanobis distance

Contours of equidistant points from the origin

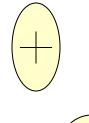


Uniformly distributed points, Euclidean distance Normally distributed points, Euclidean distance Normally distributed points, Mahalanobis distance

Should 2 CS clusters be combined?

Q2) Should 2 CS clusters be combined?

- Compute the variance of the combined subcluster
 - N, SUM, and SUMSQ allow us to make that calculation quickly
- Combine if the combined variance is below some threshold
- Many alternatives: Treat dimensions differently, consider density

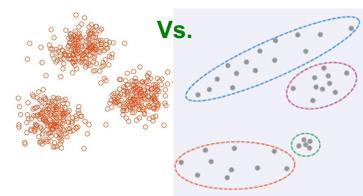


The CURE Algorithm

The CURE Algorithm

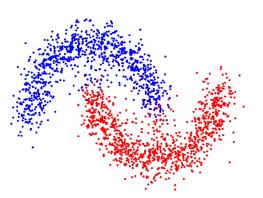
Problem with BFR/k-means:

- Assumes clusters are normally distributed in each dimension
- And axes are fixed ellipses at an angle are *not OK*

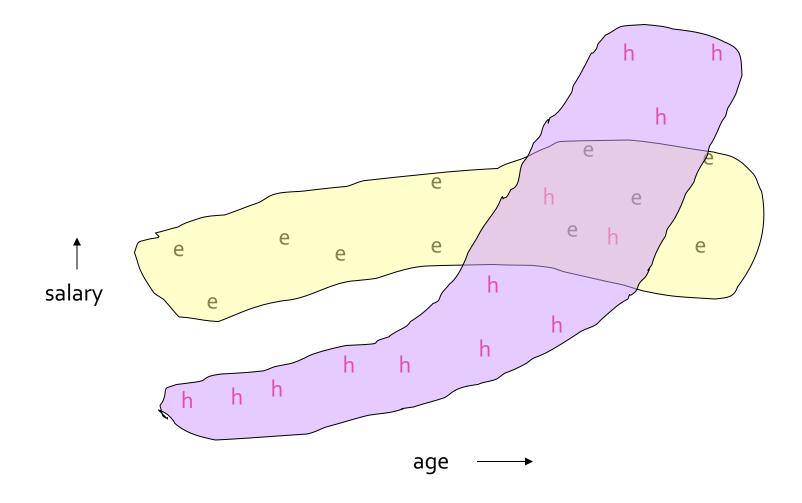


CURE (Clustering Using REpresentatives):

- Assumes a Euclidean distance
- Allows clusters to assume any shape
- Uses a collection of representative points to represent clusters



Example: University Salaries



Starting CURE

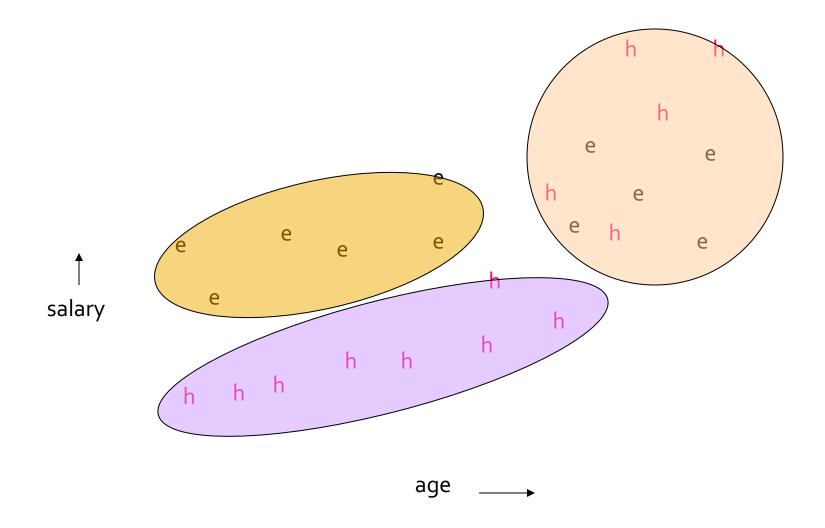
2 Pass algorithm. Pass 1:

- O) Pick a random sample of points that fit in main memory
- 1) Initial clusters:
 - Cluster these points hierarchically group nearest points/clusters

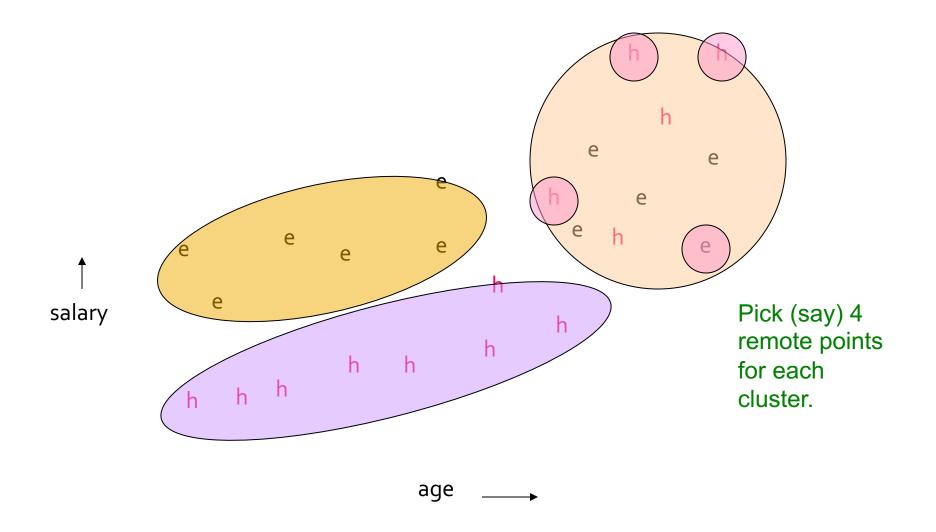
2) Pick representative points:

- For each cluster, pick a sample of points, as dispersed as possible
- From the sample, pick representatives by moving them (say) 20% toward the centroid of the cluster

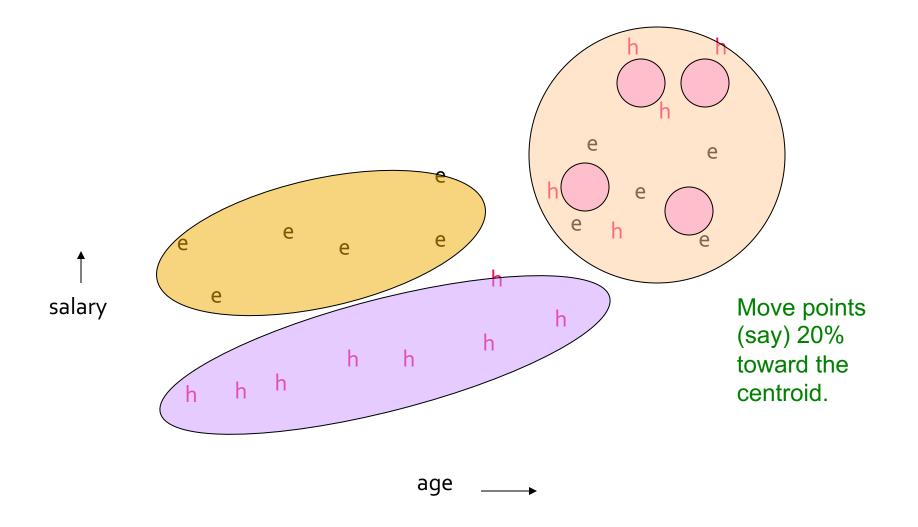
Example: Initial Clusters



Example: Pick Dispersed Points



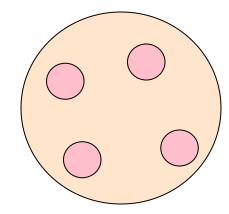
Example: Pick Dispersed Points



Finishing CURE

Pass 2:

Now, rescan the whole dataset and visit each point *p* in the data set



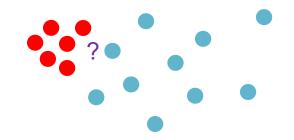
Place it in the "closest cluster"

 Normal definition of "closest": Find the closest representative point to *p* and assign it to representative's cluster р

Why the 20% Move Inward?

Intuition:

- A large, dispersed cluster will have large moves from its boundary
- A small, dense cluster will have little move.
- Favors a small, dense cluster that is near a larger dispersed cluster



Summary

 Clustering: Given a set of points, with a notion of distance between points, group the points into some number of clusters

Algorithms:

- Agglomerative hierarchical clustering:
 - Centroid and clustroid

k-means:

- Initialization, picking k
- BFR

CURE

Please give us feedback <u>https://bit.ly/CSE547feedback2024</u>