
Recitation sessions:
¡ Review of linear algebra:

§ Tuesday, April 2, 3:30-5pm CSE2 G01
¡ Review of “big data tricks” (e.g. vectorization):

§ Thursday, April 4, 3:30-5pm CSE2 G04

For office hours – please check our website

More Spark tutorials? Revisit recitation and
check out our next homework questions. If you
want to know more, you’ll need to take a focused
course.

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 1

4/1/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 2

https://bit.ly/CSE547feedback2024

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 4

Given a query image patch, find similar images

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 5

¡ Collect billions of images
¡ Determine feature vector for each image (4k dim)
¡ Given a query Q, find nearest neighbors FAST

Distance

Image B Feature Vector

Image Q Feature Vector

Similarity (Q, B)

0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 00 0 …

1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 00 1 …

…

…

Q

B

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 6

Q

Nearest neighbor
query in the
embedding space

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 7

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 8

¡ Many problems can be expressed as
finding “similar” sets:
§ Find near-neighbors in high-dimensional space

¡ Examples:
§ Pages with similar words

§ For duplicate detection, classification by topic
§ Customers who purchased similar products

§ Products with similar customer sets
§ Images with similar features

§ Image completion
§ Recommendations and search

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 9

¡ Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
§ For example:

§ An image is a long vector of pixel colors
§ A documents might be a bag-of-words or set of shingles

¡ And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
§ which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

¡ Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that
are within distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔

¡ Note: Naïve solution would take 𝑶 𝑵𝟐

where 𝑵 is the number of data points
¡ MAGIC: This can be done in 𝑶 𝑵 !! How??

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 10

¡ LSH is really a family of related techniques
¡ In general, one throws items into buckets using

several different “hash functions”
¡ You examine only those pairs of items that share

a bucket for at least one of these hash functions
¡ Upside: Designed correctly, only a small fraction

of pairs are ever examined
¡ Downside: There are false negatives – pairs of

similar items that never even get considered

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 11

¡ Suppose we need to find near-duplicate
documents among 𝑵 = 𝟏 million documents
§ Naïvely, we would have to compute pairwise

similarities for every pair of docs
§ 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons
§ At 105 secs/day and 106 comparisons/sec,

it would take 5 days

§ For 𝑵	 = 	𝟏𝟎 million, it takes more than a year…

¡ Similarly, we have a dataset of 10m images,
quickly find the most similar to query image Q

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 13

1. Shingling: Converts a document into a set
representation (Boolean vector)

2. Min-Hashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

§ Candidate pairs!

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 14

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the docu-
ment

Min
Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 15

Step 1: Shingling:
Convert a document into a set

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the docu-
ment

Step 1: Shingling: Converts a document into a set
¡ A k-shingle (or k-gram) for a document is a

sequence of k tokens that appears in the doc
§ Tokens can be characters, words or something else,

depending on the application
§ Assume tokens = characters for lecture examples

¡ To compress long shingles, we can hash them to
(say) 4 bytes

¡ Represent a document by the set of hash
values of its k-shingles

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 17

¡ Example: k=2; document D1= abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the shingles: h(D1) = {1, 5, 7}

¡ k = 8, 9, or 10 is often used in practice

¡ Benefits of shingles:
§ Documents that are intuitively similar will have

many shingles in common
§ Changing a word only affects k-shingles within

distance k-1 from the word

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 18

¡ Document D1 is represented by a set of its k-
shingles C1=S(D1)

¡ A natural similarity measure is the
Jaccard similarity:

 sim(D1, D2) = |C1ÇC2|/|C1ÈC2|

Jaccard distance: d(C1, C2) = 1 - |C1ÇC2|/|C1ÈC2|

3 in intersection.
8 in union.
Jaccard similarity
 = 3/8

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 19

Encode sets using 0/1 (bit, Boolean) vectors
¡ Rows = elements (shingles)
¡ Columns = sets (documents)

§ 1 in row e and column s if and
only if e is a member of s

§ Column similarity is the Jaccard
similarity of the corresponding
sets (rows with value 1)

§ Typical matrix is sparse!
¡ Each document is a column:

§ Example: sim(C1 ,C2) = ?
§ Size of intersection = 3; size of union = 6,

Jaccard similarity (not distance) = 3/6
§ d(C1,C2) = 1 – (Jaccard similarity) = 3/6

0101

0111

1001

1000

1010
1011

0111
Documents

Sh
in

gl
es

We don’t really construct the
matrix; just imagine it exists

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 20

¡ So far:
§ Documents to Sets of shingles
§ Represent sets as Boolean vectors in a matrix

¡ Next goal: Find similar columns while
computing small signatures
§ Similarity of columns == similarity of signatures

¡ Warnings:
§ Comparing all pairs takes too much time: Job for LSH

§ These methods can produce false negatives, and even false
positives (if the optional check is not made)

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 21

Step 2: Min-Hashing: Convert large sets to
short signatures, while preserving similarity

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Min-Hash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

¡ Key idea: “hash” each column C to a small
signature h(C), such that:
§ sim(C1, C2) is the same as the “similarity” of

signatures h(C1) and h(C2)

¡ Goal: Find a hash function h(·) such that:
§ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
§ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

¡ Idea: Hash docs into buckets. Expect that
“most” pairs of near duplicate docs hash into
the same bucket!

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 23

¡ Goal: Find a hash function h(·) such that:
§ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
§ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

¡ Clearly, the hash function depends on
the similarity metric:
§ Not all similarity metrics have a suitable

hash function
¡ There is a suitable hash function for

the Jaccard similarity: It is called Min-Hashing

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 24

¡ Permute the rows of the Boolean matrix using
some permutation p
§ Thought experiment – not actually materialized

¡ Define minhash function for this permutation p,
hp(C) = the number of the first (in the permuted
order) row in which column C has value 1.
§ Denoted this as: hp (C) = minp p(C)

¡ Apply, to all columns, several randomly chosen
permutations p to create a signature for each
column

¡ Result is a signature matrix: Columns = sets,
Rows = minhash values for each permutation p

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 25

Signature matrix M

1212

Input matrix
(Shingles x Documents)

hp (C) = minp p(C)

1 0 1 0

1 0 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

2

3

7

6

1

5

4

1

2

3

4

5

6

7

0 1 0 1

Permutation p

1 0 1 0

1 0 0 1

1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 26

Signature matrix M

Input matrix
(Shingles x Documents)

hp (C) = minp p(C)

1 0 1 0

1 0 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

4

2

1

3

6

7

5

1

2

3

4

5

6

7

Permutation p

0 1 0 1

1 0 0 1

0 1 0 1

1 0 1 0

1 0 1 0

0 1 0 1

1 0 1 0

1212
 1412

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 27

Signature matrix M

Input matrix
(Shingles x Documents)

hp (C) = minp p(C)

1 0 1 0

1 0 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

3

4

7

2

6

1

5

1

2

3

4

5

6

7

Permutation p

1 0 1 0

0 1 0 1

1 0 1 0

1 0 0 0

1 0 1 0

0 1 0 1

0 1 0 1

1212
 1412

2121

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 28

¡ Students sometimes ask whether the minhash
value should be the original number of the
row, or the number in the permuted order (as
we did in our example)

¡ Answer: it doesn’t matter
§ We only need to be consistent, and assure that

two columns get the same value if and only if their
first 1’s in the permuted order are in the same row

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 29

¡ Choose a random permutation p
¡ Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2)
¡ Why?

§ Let X be a doc (set of shingles), zÎ X is a shingle
§ Then: Pr[p(z) = min(p(X))] = 1/|X|

§ It is equally likely that any zÎ X is mapped to the min element

§ Let y be s.t. p(y) = min(p(C1ÈC2))
§ Then either: p(y) = min(p(C1)) if y Î C1 , or
 p(y) = min(p(C2)) if y Î C2

§ So the prob. that both are true is the prob. y Î C1 Ç C2

§ Pr[min(p(C1))=min(p(C2))]=|C1ÇC2|/|C1ÈC2|= sim(C1, C2)

01

10

00

11

00

00

One of the two
cols had to have
1 at position y

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 30

¡ Given cols C1 and C2, rows are classified as:
 C1 C2

 A 1 1
 B 1 0
 C 0 1
 D 0 0
§ Define: a = # rows of type A, etc.

¡ Note: sim(C1, C2) = a/(a +b +c)
¡ Then: Pr[h(C1) = h(C2)] = Sim(C1, C2)

§ Look down the permuted cols C1 and C2 until we see a 1
§ If it’s a type-A row, then h(C1) = h(C2)

If a type-B or type-C row, then not

01

10

00

11

00

00

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 31

¡ We know: Pr[hp(C1) = hp(C2)] = sim(C1, C2)
¡ Now generalize to multiple hash functions

¡ The similarity of two signatures is the
fraction of the hash functions in which they
agree

¡ Thus, the expected similarity of two
signatures equals the Jaccard similarity of the
columns or sets that the signatures represent
§ And the longer the signatures, the smaller will be

the expected error
4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 32

Similarities:
 1-3 2-4 1-2 3-4
Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

5

7

6

3

1

2

4

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation p

1212

1412

2121

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 33

¡ Permuting rows even once is prohibitive
¡ Row hashing!

§ Pick K = 100 hash functions hi

§ Ordering under hi gives a random permutation p of rows!
¡ One-pass implementation

§ For each column c and hash-func. hi keep a “slot” M(i, c)
for the min-hash value of

§ Initialize all M(i, c) = ¥
§ Scan rows looking for 1s

§ Suppose row j has 1 in column c
§ Then for each hi :

§ If hi(j) < M(i, c), then M(i, c) ¬ hi(j)

How to pick a random
hash function h(x)?
Universal hashing:
ha,b(x)=((a·x+b) mod p) mod N
where:
a,b … random integers
p … prime number (p > N)

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 34

for each row r do begin
 for each hash function hi do
 compute hi (r);
 for each column c
 if c has 1 in row r
 for each hash function hi do

 if hi (r) < M(i, c) then
 M(i, c) := hi (r);

end;

Important: so you hash r only
once per hash function, not
once per 1 in row r.

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 35

Row C1 C2
 1 1 0
 2 0 1
 3 1 1
 4 1 0
 5 0 1

h(x) = x mod 5
g(x) = (2x+1) mod 5

h(1) = 1 1 ∞
g(1) = 3 3 ∞

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

M(i, C1) M(i, C2)

Signature matrix M

permutation
h(x) g(x)
 1 3
 2 0
 3 2
 4 4
 0 1

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 36

Step 3: Locality Sensitive Hashing:
Focus on pairs of signatures likely to be from
similar documents

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Min-Hash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

¡ Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

¡ LSH – General idea: Use a hash function that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

¡ For Min-Hash matrices:
§ Hash columns of signature matrix M to many buckets
§ Each pair of documents that hashes into the

same bucket is a candidate pair

1212

1412

2121

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 38

¡ Pick a similarity threshold s (0 < s < 1)

¡ Columns x and y of M are a candidate pair if
their signatures agree on at least fraction s of
their rows:
M (i, x) = M (i, y) for at least frac. s values of i
§ We expect documents x and y to have the same

(Jaccard) similarity as their signatures

1212

1412

2121

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 39

¡ Big idea: Hash columns of
signature matrix M several times

¡ Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

¡ Candidate pairs are those that hash to the
same bucket

1212

1412

2121

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 40

Signature matrix M

r rows
per band

b bands

One
signature

1212

1412

2121

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 41

¡ Divide matrix M into b bands of r rows

¡ For each band, hash its portion of each
column to a hash table with k buckets
§ Make k as large as possible

¡ Candidate column pairs are those that hash
to the same bucket for ≥ 1 band

¡ Tune b and r to catch most similar pairs,
but few non-similar pairs

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 42

Matrix M

r rows b bands

Buckets

Columns 2 and 6
are probably identical
(candidate pair)

Columns 6 and 7 are
surely different.

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 43

¡ There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

¡ Hereafter, we assume that “same bucket”
means “identical in that band”

¡ Assumption needed only to simplify analysis,
not for correctness of algorithm

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 44

Assume the following case:
¡ Suppose 100,000 columns of M (100k docs)
¡ Signatures of 100 integers (rows)
¡ Therefore, signatures take 40MB
¡ Goal: Find pairs of documents that

are at least s = 0.8 similar
¡ Choose b = 20 bands of r = 5 integers/band

1212

1412

2121

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 45

¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.8

§ Since sim(C1, C2) ³ s, we want C1, C2 to be a candidate
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

¡ Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328

¡ Probability C1, C2 are not identical in all of the 20
bands: (1-0.328)20 = 0.00035
§ i.e., about 1/3000th of the 80%-similar column pairs

are false negatives (we miss them)
§ We would find 99.965% pairs of truly similar documents

1212

1412

2121

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 46

¡ Find pairs of ³ s=0.8 similarity, set b=20, r=5
¡ Assume: sim(C1, C2) = 0.3

§ Since sim(C1, C2) < s we want C1, C2 to hash to NO
common buckets (all bands should be different)

¡ Probability C1, C2 identical in one particular
band: (0.3)5 = 0.00243

¡ Probability C1, C2 identical in at least 1 of 20
bands: 1 - (1 - 0.00243)20 = 0.0474
§ In other words, approximately 4.74% pairs of docs

with similarity 0.3 end up becoming candidate pairs
§ They are false positives since we will have to examine them

(they are candidate pairs) but then it will turn out their
similarity is below threshold s

1212

1412

2121

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 47

¡ Pick:
§ The number of Min-Hashes (rows of M)
§ The number of bands b, and
§ The number of rows r per band

to balance false positives/negatives
§ Note, M=b*r

¡ Example: If we had only 10 bands of 10 rows,
how would FP/FN change?

¡ Answer: The number of false positives would
go down, but the number of false negatives
would go up (it’s harder to become a
candidate pair in a bucket now).

1212

1412

2121

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 48

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

Si
m

ila
rit

y
th

re
sh

ol
d
s

No chance
if t < s

Probability = 1
if t > s

Say “yes” if you are
below the red line.

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 49

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 50

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

False
positives

False
negatives

s

Say “yes” if you
are below the line.

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 51

¡ Say columns C1 and C2 have similarity t
¡ Pick any band (r rows)
§ Prob. that all rows in band equal = tr
§ Prob. that some row in band unequal = 1 - tr

¡ Prob. that no band identical = (1 - tr)b

¡ Prob. that at least 1 band identical =
 1 - (1 - tr)b

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 52

t r

1: All rows
of a band
are equal

1 -

2: Some row
of a band
unequal

()b

3: No
bands
identical

1 -

4: At least
one band
identical

Similarity t=sim(C1, C2) of two sets

Probability of
sharing at least

one bucket

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 53

¡ Similarity threshold s
¡ Prob. that at least 1 band is identical:

s 1-(1-s^r)^b
0.2 0.006
0.3 0.047
0.4 0.186
0.5 0.470
0.6 0.802
0.7 0.975
0.8 0.9996

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 54

¡ Picking r and b to get the best S-curve
§ 50 hash-functions (r=5, b=10)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Yellow area: False Negative rate
Blue area : False Positive rate

Similarity

Pr
ob

. s
ha

rin
g

a
bu

ck
et

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 55

¡ Tune M, b, r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures

¡ Check in main memory that candidate pairs
really do have similar signatures

¡ Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 56

¡ Shingling: Convert documents to set representation
§ We used hashing to assign each shingle an ID

¡ Min-Hashing: Convert large sets to short signatures,
while preserving similarity
§ We used similarity preserving hashing to generate

signatures with property Pr[hp(C1) = hp(C2)] = sim(C1, C2)
§ We used hashing to get around generating random

permutations
¡ Locality-Sensitive Hashing: Focus on pairs of

signatures likely to be from similar documents
§ We used hashing to find candidate pairs of similarity ³ s

4/1/24 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 57

4/1/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 58

https://bit.ly/CSE547feedback2024

