
We are releasing HW1 today
¡ It is due in 2 weeks (4/11 at 23:59pm PT)
¡ The homework is long

§ HWs requires proving theorems as well as coding
¡ Please start early

Releasing Colab 0 and Colab 1 today

Recitation: Basic probability and proof techniques
Today, March 28, 3:30-5pm CSE2 G04

Group projects are recommended to have 3-4
students. We strongly advise against smaller teams.

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 1

Supermarket shelf management –
Market-basket model:

¡ Goal: Identify items that are bought together by
sufficiently many customers

¡ Approach: Process the sales data collected with
barcode scanners to find dependencies among
items

¡ A “classic” rule:
§ If someone buys diaper and milk, then he/she is

likely to buy beer
§ Don’t be surprised if you find six-packs next to diapers!

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 3

¡ A large set of items
§ e.g., things sold in a

supermarket
¡ A large set of baskets
§ Each basket is a

small subset of items
§ e.g., the things one customer

buys on one day (or “cart”)
¡ Discover association rules:

People who bought {x,y,z} tend to buy {v,w}
§ Example applications: Amazon, Spotify, Walmart…

Basket Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Input:

Rules Discovered:
 {Milk} --> {Coke}
 {Diaper, Milk} --> {Beer}

Output:

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 4

¡ A general many-to-many mapping
(association) between two kinds of things
§ But we ask about connections among “items”,

not “baskets”
¡ Items and baskets are abstract:
§ For example:

§ Items/baskets can be products/shopping basket
§ Items/baskets can be words/documents
§ Items/baskets can be basepairs/genes
§ Items/baskets can be drugs/patients

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 5

¡ Items = products; Baskets = sets of products
someone bought in one trip to the store

¡ Real market baskets: Chain stores keep TBs of
data about what customers buy together
§ Tells how typical customers navigate stores, lets

them position tempting items:
§ Apocryphal story of “diapers and beer” discovery
§ Used to position potato chips between diapers and beer to

enhance sales of potato chips
¡ Amazon’s ‘people who bought X also bought Y’

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 6

¡ Baskets = sentences; Items = documents in
which those sentences appear
§ Items that appear together too often could

represent plagiarism
§ Notice items do not have to be “in” baskets

¡ Baskets = patients; Items = drugs & side-effects
§ Has been used to detect combinations

of drugs that result in particular side-effects
§ But requires extension: Absence of an item

needs to be observed as well as presence
3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 7

First: Define
Frequent itemsets
Association rules:
 Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
Finding frequent pairs
A-Priori algorithm
PCY algorithm

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 8

¡ Simplest question: Find sets of items that
appear together “frequently” in baskets

¡ Support for itemset I: Number of baskets
containing all items in I
§ (Often expressed as a fraction

of the total number of baskets)
¡ Given a support threshold s,

then sets of items that appear
in at least s baskets are called
frequent itemsets

Support of
{Beer, Bread} = 2

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 9

¡ Items = {milk, coke, pepsi, beer, juice}
¡ Support threshold = 3 baskets

 B1 = {m, c, b} B2 = {m, p, j}
 B3 = {m, b} B4 = {c, j}
 B5 = {m, p, b} B6 = {m, c, b, j}
 B7 = {c, b, j} B8 = {b, c}

¡ Frequent itemsets: {m}, {c}, {b}, {j},
{m,b} , {b,c} , {c,j}.

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 10

¡ Define: Association Rules:
If-then rules about the contents of baskets

¡ {i1, i2,…,ik} → j means: “if a basket contains
all of i1,…,ik then it is likely to contain j”

¡ In practice there are many rules, want to find
significant/interesting ones!

¡ Confidence of association rule is the
probability of j given I = {i1,…,ik}

)support(
)support()conf(

I
jIjI È

=®

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 11

What if everyone buys milk?

conf({Beer} → Milk) = 1
conf({Bread} → Milk) = 1
...
conf({Beer,Bread,Diapers} → Milk) = 1

We have 100% confidence for I → milk, no
matter what I we choose!

Observations

Bread, Coke, Milk

Beer, Bread, Milk

Beer, Coke, Diapers, Milk

Beer, Bread, Diapers, Milk

Coke, Diapers, Milk

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 12

¡ Not all high-confidence rules are interesting
§ The rule X → milk may have high confidence for

many itemsets X, because milk is just purchased very
often (independent of X) and the confidence will be
high

¡ Interest of an association rule I → j:
abs. difference between its confidence and
the fraction of baskets that contain j

|]Pr[)conf(|)Interest(jjIjI -®=®
§ Interesting rules are those with high positive or

negative interest values (usually above 0.5)
3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 13

B1 = {m, c, b} B2 = {m, p, j}
 B3 = {m, b} B4= {c, j}
 B5 = {m, p, b} B6 = {m, c, b, j}
 B7 = {c, b, j} B8 = {b, c}

¡ Association rule: {m, b} →c
§ Support = 2
§ Confidence = 2/4 = 0.5
§ Interest = |0.5 – 5/8| = 1/8

§ Item c appears in 5/8 of the baskets
§ The rule is not very interesting!

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 14

)support(
)support()conf(

I
jIjI È

=®

¡ Problem: Find all association rules with
support ≥s and confidence ≥c
§ Note: Support of an association rule is the support

of the set of items in the rule (left and right side)
¡ Hard part: Finding the frequent itemsets!
§ If {i1, i2,…, ik} → j has high support and

confidence, then both {i1, i2,…, ik} and
{i1, i2,…,ik, j} will be “frequent”

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 15

¡ Step 1: Find all frequent itemsets I
§ (we will explain this next)

¡ Step 2: Rule generation
§ For every subset A of I, generate a rule A → I \ A

§ Since I is frequent, A is also frequent (monotonicity)
§ Variant 1: Single pass to compute the rule confidence

§ confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)
§ Variant 2:

§ Observation: If A,B,C→D is below confidence, so is A,B→C,D
§ Can generate “bigger” rules from smaller ones!

§ Output the rules above the confidence threshold

)support(
)support()conf(

I
jIjI È

=®

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 16

B1 = {m, c, b} B2 = {m, p, j}
 B3 = {m, c, b, n} B4= {c, j}
 B5 = {m, p, b} B6 = {m, c, b, j}
 B7 = {c, b, j} B8 = {b, c}

¡ Support threshold s = 3, confidence c = 0.75
¡ Step 1) Find frequent itemsets:
§ {b,m} {b,c} {c,m} {c,j} {m,c,b}

¡ Step 2) Generate rules:
§ b→m: c=4/6 b→c: c=5/6 b,c→m: c=3/5
§ m→b: c=4/5 … b,m→c: c=3/4

 b→c,m: c=3/6

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 17

¡ To reduce the number of rules, we can
post-process them and only output:
§ Maximal frequent itemsets:

No immediate superset (same set and one
additional item) is frequent
§ Gives more pruning

or
§ Closed itemsets:

No immediate superset has the same support (> 0)
§ Stores not only frequent information, but exact

supports/counts
3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 18

Support

A 4
B 5
C 3

AB 4
AC 2
BC 3

ABC 2

Frequent
(s=3)

Yes
Yes
Yes
Yes
No
Yes
No

Maximal

No
No
No
Yes
No
Yes
No

Closed

No
Yes
No
Yes
No
Yes
Yes

Superset AB
also frequent

ABC (only
superset)
not freq

Superset BC
has same
support

ABC (only
superset) has
smaller support

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 19

¡ Back to finding frequent itemsets
¡ Typically, data is kept in flat files

rather than in a database system:
§ Stored on disk
§ Stored basket-by-basket
§ Baskets are small but we have

many baskets and many items
§ Expand baskets into pairs, triples, etc.

as you read baskets
§ Use k nested loops to generate all

sets of size k
Note: We want to find frequent itemsets. To find them, we have to
count them. To count them, we have to enumerate them.

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers,
and boundaries between

baskets are –1.

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 21

¡ The true cost of mining disk-
resident data is usually the number
of disk I/Os

¡ In practice, association-rule
algorithms read the data in passes
– all baskets read in turn

¡ We measure the cost by the
number of passes an algorithm
makes over the data

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers,
and boundaries between

baskets are –1.

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 22

¡ For many frequent-itemset algorithms,
main-memory is the critical resource
§ As we read baskets, we need to count

something, e.g., occurrences of pairs of items
§ The number of different things we can count

is limited by main memory
§ Swapping counts in/out is a disaster

§ Swapping means having to push memory to/from disk
because memory was too small.

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 23

¡ The hardest problem often turns out to be
finding the frequent pairs of items {i1, i2}
§ Why? Freq. pairs are common, freq. triples are rare

§ Why? Probability of being frequent drops exponentially
with size; number of sets grows more slowly with size

¡ Let’s first concentrate on pairs, then extend to
larger sets

¡ The approach:
§ We always need to generate all the itemsets
§ But we would only like to count (keep track) of those

itemsets that in the end turn out to be frequent
3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 24

¡ Naïve approach to finding frequent pairs
¡ Read file once, counting in main memory

the occurrences of each pair:
§ From each basket of n items, generate its

n(n-1)/2 pairs by two nested loops
¡ Fails if (#items)2 exceeds main memory
§ Remember: #items can be

100K (Wal-Mart) or 10B (Web pages)
§ Suppose 105 items, counts are 4-byte integers
§ Number of pairs of items: 105(105-1)/2 » 5*109

§ Therefore, 2*1010 (20 gigabytes) of memory is needed
3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 25

Goal: Count the number of occurrences of
each pair of items (i,j):

¡ Approach 1: Count all pairs using a matrix

¡ Approach 2: Keep a table of triples [i, j, c] =
“the count of the pair of items {i, j} is c.”
§ If integers and item ids are 4 bytes, we need

approximately 12 bytes for pairs with count > 0
§ Plus some additional overhead for the hashtable

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 26

4 bytes per pair

Triangular Matrix
Item i

Ite
m

 j

Triples

12 per
occurring pair

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 27

¡ Approach 1: Triangular Matrix
§ n = total number items
§ Count pair of items {i, j} only if i<j
§ Keep pair counts in lexicographic order:

§ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…
§ Pair {i, j} is at position: [n(n - 1) - (n - i)(n - i + 1)]/2 + (j - i)
§ Total number of pairs n(n –1)/2; total bytes= O(n2)
§ Triangular Matrix requires 4 bytes per pair

¡ Approach 2 uses 12 bytes per occurring pair
(but only for pairs with count > 0)

¡ Approach 2 beats Approach 1 if less than 1/3 of
possible pairs actually occur

Item i

Ite
m

 j

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 28

¡ Approach 1: Triangular Matrix
§ n = total number items
§ Count pair of items {i, j} only if i<j
§ Keep pair counts in lexicographic order:

§ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…
§ Pair {i, j} is at position: [n(n - 1) - (n - i)(n - i + 1)]/2 + (j - i)
§ Total number of pairs n(n –1)/2; total bytes= O(n2)
§ Triangular Matrix requires 4 bytes per pair

¡ Approach 2 uses 12 bytes per occurring pair
(but only for pairs with count > 0)

¡ Approach 2 beats Approach 1 if less than 1/3 of
possible pairs actually occur

Problem is if we have too
many items so the pairs
do not fit into memory.

Can we do better?

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 29

• Monotonicity of “Frequent”
• Notion of Candidate Pairs
• Extension to Larger Itemsets

¡ A two-pass approach called
A-Priori limits the need for
main memory

¡ Key idea: monotonicity
§ If a set of items I appears at

least s times, so does every subset J of I
¡ Contrapositive for pairs:

If item i does not appear in s baskets, then no
pair including i can appear in s baskets

¡ So, how does A-Priori find freq. pairs?
3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 31

¡ Pass 1: Read baskets and count in main memory
the # of occurrences of each individual item

§ Requires only memory proportional to #items

¡ Items that appear ≥ 𝒔 times are the frequent items

¡ Pass 2: Read baskets again and keep track of the
count of only those pairs where both elements
are frequent (from Pass 1)
§ Requires memory proportional to square of frequent

items only (for counts)
§ Plus a list of the frequent items (so you know what must

be counted)

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 32

Item counts

Pass 1 Pass 2

Frequent items
M

ai
n

m
em

or
y Counts of

pairs of
frequent items

(candidate
pairs)

Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.
3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 33

¡ You can use the
triangular matrix
method with n = number
of frequent items
§ May save space compared

with storing triples
¡ Trick: re-number

frequent items 1,2,…
and keep a table relating
new numbers to original
item numbers

Item counts

Pass 1 Pass 2

Counts of pairs
of frequent

items

Frequent
items

Old
item
IDs

M
ai

n
m

em
or

y

Counts of
pairs of

frequent items

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 34

¡ For each k, we construct two sets of
k-tuples (sets of size k):
§ Ck = candidate k-tuples = those that might be

frequent sets (support > s) based on information
from the pass for k–1

§ Lk = the set of truly frequent k-tuples

C1 L1 C2 L2 C3Filter Filter ConstructConstruct

All
items

All pairs
of items
from L1

Count
the pairs

To be
explained

Count
the items

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 35

baskets
{m, c, b}
{m, p, j}

{m, c, b, n}
{c, j}

{m, p, b}
{m, c, b, j}

{c, b, j}
{b, c}

s = 3

C_1 = { {b}, {c}, {j}, {m}, {n}, {p} }

Supports: {b} → 6, {c} → 6, {j} → 4,
{m} → 5, {n} → 1, {p} → 2

L_1 = { {b}, {c}, {j}, {m} }

C_2 = { {b,c}, {b,j}, {b,m}, {c,j}, {c,m}, {j,m} }

Supports: {b,c} → 5, {b,j} → 2, {b,m} → 4
{c,j} → 3, {c,m} → 3, {j,m} → 2

L_2 = { {b,c}, {b,m}, {c,j}, {c,m} }

C_3 = { {b,c,m}, {b,c,j}, {b,m,j}, {c,m,j} }

Supports: {b,c,m} → 3

L_3 = { {b,c,m} }

** In order for a triple
to be frequent, the
three pairs it contains
must all be frequent.

C
1

L1

Filter

Construct

C
2

L
2

Filter

Construct

C
3

L3

Filter
**

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 36

¡ One pass for each k (itemset size)
¡ Needs room in main memory to count

each candidate k–tuple
¡ For typical market-basket data and reasonable

support (e.g., 1%), k = 2 requires the most memory

¡ Many possible extensions:
§ Association rules with intervals:

§ For example: Men over 65 have 2 cars
§ Association rules when items are in a taxonomy

§ Bread, Butter → FruitJam
§ BakedGoods, MilkProduct → PreservedGoods

§ Lower the support s as itemset gets bigger
3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 37

• Improvement to A-Priori
• Exploits Empty Memory on First Pass
• Frequent Buckets

¡ Observation:
In pass 1 of A-Priori, most memory is idle
§ We store only individual item counts
§ Can we use the idle memory to reduce

memory required in pass 2?

¡ Pass 1 of PCY: In addition to item counts,
maintain a hash table with as many
buckets as fit in memory
§ Keep a count for each bucket into which

pairs of items are hashed
§ For each bucket just keep the count, not the actual

pairs that hash to the bucket!

Note:
Bucket≠Basket

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 39

¡ A hash function maps items to buckets
¡ Collisions

§ # buckets < # possible pairs
§ A collision occurs when h maps multiple items to the

same bucket

{b,c}
{b,j}

{b,m}
{c,j}

{c,m}

1
2
3
4

Bucket 1 contains counts for {c,j} only,
but bucket 2 contains counts for both
{b,c} and {c,m}

Frequent pair Frequent bucket

Not frequent
bucket

Not frequent
pair(s)

Frequent bucket Frequent pair(s)

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 40

FOR (each basket) :
 FOR (each item in the basket) :
 add 1 to item’s count;
 FOR (each pair of items) :
 hash the pair to a bucket;
 add 1 to the count for that bucket;

¡ Few things to note:
§ Pairs of items need to be generated from the input

file; they are not present in the file
§ We are not just interested in the presence of a pair,

but we need to see whether it is present at least s
(support) times

New
in

PCY

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 41

¡ Observation: If a bucket contains a frequent pair,
then the bucket is surely frequent

¡ However, even without any frequent pair,
a bucket can still be frequent L
§ So, we cannot use the hash to eliminate any

member (pair) of a “frequent” bucket
¡ But, for a bucket with total count less than s,

none of its pairs can be frequent J
§ Pairs that hash to this bucket can be eliminated as

candidates (even if the pair consists of 2 frequent items)

¡ Pass 2:
Only count pairs that hash to frequent buckets

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 42

¡ Replace the buckets by a bit-vector:
§ 1 means the bucket count exceeded the support s

(call it a frequent bucket); 0 means it did not

¡ 4-byte integer counts are replaced by bits,
so the bit-vector requires 1/32 of memory

¡ Also, decide which items are frequent
and list them for the second pass

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 43

¡ Count all pairs {i, j} that meet the
conditions for being a candidate pair:

1. A-priori: Both i and j are frequent items
2. PCY: The pair {i, j} hashes to a bucket whose bit

in the bit vector is 1 (i.e., a frequent bucket)

¡ Both conditions are necessary for the
pair to have a chance of being frequent

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 44

Hash
table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Hash table
for pairs

M
ai

n
m

em
or

y

Counts of
candidate

pairs

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 45

¡ The MMDS book covers several other extensions
beyond the PCY idea: “Multistage” and
“Multihash”

¡ For reading on your own, Sect. 6.4 of MMDS

¡ Recommended video (starting about 10:10):
https://www.youtube.com/watch?v=AGAkNiQnbjY

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 46

https://www.youtube.com/watch?v=AGAkNiQnbjY

• Simple Algorithm
• Savasere-Omiecinski- Navathe (SON) Algorithm
• Toivonen’s Algorithm

¡ A-Priori, PCY, etc., take k passes to find
frequent itemsets of size k

¡ Can we use fewer passes?

¡ Use 2 or fewer passes for all sizes,
but may miss some frequent itemsets
§ Random sampling

§ Do not sneer; “random sample” is often a cure for the
problem of having too large a dataset.

§ SON (Savasere, Omiecinski, and Navathe)
§ Toivonen

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 48

¡ Take a random sample of the market baskets

¡ Run a-priori or one of its improvements
like PCY in main memory
§ So we don’t pay for disk I/O each

time we increase the size of itemsets
§ Reduce support threshold

proportionally to match the sample size
§ Example: if your sample is 1/100 of the baskets,

use s/100 as your support threshold instead of s.

Copy of
sample
baskets

Space
 for
counts

M
ai

n
m

em
or

y

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 49

¡ To avoid false positives: Optionally, verify that
the candidate pairs are truly frequent in the
entire data set by a second pass

¡ But you don’t catch sets frequent in the
whole but not in the sample (false negative)
§ Smaller threshold, e.g., s/125, helps catch more

truly frequent itemsets (s/125 < s/100)
§ But requires more space
§ Note that the choice of 125 is arbitrary

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 50

¡ SON Algorithm: Repeatedly read small subsets of
the baskets into main memory and run an in-
memory algorithm to find all frequent itemsets
§ Note: we are not sampling, but processing the entire

file in memory-sized chunks

¡ An itemset becomes a candidate if it is found to
be frequent in any one or more subsets of the
baskets.
§ Note that we need to adjust the frequency threshold

proportionally based on the size of the subset.

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 51

¡ On a second pass, count all the candidate
itemsets and determine which are frequent in
the entire set

¡ Key “monotonicity” idea: An itemset cannot
be frequent in the entire set of baskets unless
it is frequent in at least one subset

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 52

Pass 1:
¡ Start with a random sample, but lower the

threshold slightly for the sample:
§ Example: if the sample is 1% of the baskets, use
s/125 as the support threshold rather than s/100

¡ Find frequent itemsets in the sample
¡ Add to the itemsets that are frequent in the

sample the negative border of these itemsets:
§ Negative border: An itemset is in the negative

border if it is not frequent in the sample, but all its
immediate subsets are
§ Immediate subset = “delete exactly one element”

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 53

¡ {A,B,C,D} is in the negative border if and only if:
1. It is not frequent in the sample, but
2. All of {A,B,C}, {B,C,D}, {A,C,D}, and {A,B,D} are.

Negative Border

…

tripletons

doubletons

singletons
Frequent Itemsets

from Sample

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 54

¡ Pass 1:
§ Start with the random sample, but lower the threshold

slightly for the subset
§ Add to the itemsets that are frequent in the sample the

negative border of these itemsets
¡ Pass 2:

§ Count all candidate frequent itemsets from the first pass,
and also count sets in their negative border

¡ Key: If no itemset from the negative border turns out to
be frequent, then we found all the frequent itemsets.
§ What if we find that something in the negative border is

frequent?
§ We must start over again with another sample!
§ Try to choose the support threshold so the probability of failure is low,

while the number of itemsets checked on the second pass fits in main-
memory.

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 55

Negative Border…

tripletons

doubletons

singletons
Frequent Itemsets

from Sample

We broke through the
negative border. How
far does the problem
 go?

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 56

¡ Frequent Itemset Mining
¡ Association Rules

¡ A Priori Algorithm: Dynamic Programming
¡ PCY: Improvement using Hashing

¡ Announcements:
§ Spark Tutorial Today!
§ HW1 posted today – start early
§ Ed – Search for Teammates!

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 57

3/25/24 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 58

https://bit.ly/547feedback

