Submodular Optimization

CS547 Machine Learning for Big Data
Tim Althoff

Motivation

- Learned about: LSH/Similarity search \& recommender systems
- Search: "jaguar" Google
- Uncertainty about the user's information need
- Don't put all eggs in one basket!
- Relevance isn't everything - need diversity!

Many applications need diversity!

- Recommendation: NETFLIX

- Summarization:
"Robert Downey Jr."
WIkipediA

- News Media:

Automatic Timeline Generation

Person

Timeline

- Goal: Timeline should express their relationships to other people through events (personal, collaboration, mentorship, etc.)
- Why timelines?
- Easier: Wikipedia article is 18 pages long
- Context: Through relationships \& event descriptions
" Exploration: Can "jump" to other people

Problem Definition

- Given:
- Relevant relationships
- Events that each cover some relationships
- Goal: Given a large set of events, pick a small subset that explains most known relationships ("the timeline")

Demo available at: http://cs.stanford.edu/~althoff/timemachine/demo.html

Example Timeline

Why diversity?

- User studies: People hate redundancy!

Iron Man
US Release
Iron Man
Award
Ceremony Iron Man
EU Release

VS

Iron Man

US Release

Chaplin
Academy Award N .

Rented Lips
US Release

- Want to see more diverse set of relationships

Diversity as Coverage

Encode Diversity as Coverage

- Idea: Encode diversity as coverage problem
- Example: Selecting events for timeline
- Try to cover all important relationships

What is being covered?

- Q: What is being covered?
- A: Relationships

Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey

Downey Jr. starred in Chaplin together with Anthony Hopkins

- Q: Who is doing the covering?
- A: Timeline Events

Simple Coverage Model

- Suppose we are given a set of events E
- Each event e covers a set $X_{e} \subseteq U$ of relationships
- For a set of events $S \subseteq E$ we define:

$$
F(S)=\left|\bigcup_{e \in S} X_{e}\right|
$$

- Goal: We want to $\max _{|S| \leq k} F(S)$

Cardinality
Constraint

- Note: $\mathrm{F}(\mathrm{S})$ is a set function: $F(S): 2^{E} \rightarrow \mathbb{N}$

Maximum Coverage Problem

- Given universe of elements $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and sets $\left\{X_{1}, \ldots, X_{m}\right\} \subseteq U$

U: all relationships X_{i} : relationships covered by event i

- Goal: Find set of k events $X_{1} \ldots X_{k}$ covering most of U
- More precisely: Find set of k events $X_{1} \ldots X_{k}$ whose size of the union is the largest

Simple Greedy Heuristic

Simple Heuristic: Greedy Algorithm:

- Start with $\mathrm{S}_{0}=\{ \}$
- For $\mathrm{i}=1$.... k
- Take event e that max $F\left(S_{i-1} \cup e\right)$
- Let $S_{i}=S_{i-1} \cup\{e\}$

$$
F(S)=\left|\bigcup_{e \in S} X_{e}\right|
$$

- Example:
- Eval. $F\left(\left\{e_{1}\right\}\right), \ldots, F\left(\left\{e_{m}\right\}\right)$, pick best (say $\left.\mathbf{e}_{1}\right)$
- Eval. $F\left(\left\{e_{1}\right\} u\left\{e_{2}\right\}\right), \ldots, F\left(\left\{e_{1}\right\} u\left\{e_{m}\right\}\right)$, pick best (say $\left.e_{2}\right)$
- Eval. $F\left(\left\{e_{1}, e_{2}\right\} u\left\{e_{3}\right\}\right), \ldots, F\left(\left\{e_{1}, e_{2}\right\} u\left\{e_{m}\right\}\right)$, pick best
- And so on...

Simple Greedy Heuristic

- Goal: Maximize the covered area

Simple Greedy Heuristic

- Goal: Maximize the covered area

Simple Greedy Heuristic

- Goal: Maximize the covered area

Simple Greedy Heuristic

- Goal: Maximize the covered area

Simple Greedy Heuristic

- Goal: Maximize the covered area

When Greedy Heuristic Fails?

- Goal: Maximize the size of the covered area with two sets
- Greedy first picks A and then C
- But the optimal way would be to pick B and C

Bad News \& Good News

- Bad news: Maximum Coverage is NP-hard
- Related to Set Cover Problem
- Good news: Good approximations exist
- Problem has certain structure to it that even simple greedy algorithms perform reasonably well
- Details in $2^{\text {nd }}$ half of lecture
- Now: Generalize our objective for timeline generation

Issue 1: Not all relationships are created equal

- Objective values all relationships equally

$$
F(S)=\left|\bigcup_{e \in S} X_{e}\right|=\sum_{r \in R} 1 \text { where } R=\bigcup_{e \in S} X_{e}
$$

- Unrealistic: Some relationships are more important than others
" use different weights ("weighted coverage function")

$$
F(S)=\sum_{r \in R} w(r) \quad w: R \rightarrow \mathbb{R}^{+}
$$

Example weight function

- Use global importance weights
- How much interest is there?
- Could be measured as
- $w(X)=$ \# search queries for person X
- $w(X)=$ \# Wikipedia article views for X
- $w(X)=\#$ news article mentions for X

Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey
\downarrow

Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey

Better weight function

Captain America Justin Bieber Susan Downey Tim Althoff
 \downarrow Applying global importance weights
 Captain America
 Justin Bieber
 Susan Downey

- Some relationships are not (very) globally important but (not) highly relevant to timeline
- Need relevant to timeline instead of globally relevant
w(Susan Downey | RDJr) > w(Justin Bieber | RDJr)

Capturing relevance to timeline

- Can use co-occurrence statistics $\mathbf{w (X ~ | ~ R D J r) ~ = ~ \# (X ~ a n d ~ R D J r) ~ / ~ (\# (R D J r) ~ * ~ \# (X)) ~}$
- Similar: Pointwise mutual information (PMI)
- How often do X and Y occur together compared to what you would expect if they were independent
- Accounts for popular entities (e.g., Justin Bieber)

Issue 2: Differentiating between events

- How to differentiate between two events that cover the same relationships?
- Example: Robert and Susan Downey
" Event 1: Wedding, August 27, 2005
- Event 2: Minor charity event, Nov 11, 2006
- We need to be able to distinguish these!

Scoring of event timestamps

- Further improvement when we not only score relationships but also score the event timestamp

$$
F(S)=\sum_{r \in R} w_{R}(r)+\sum_{e \in S} w_{T}\left(t_{e}\right) \quad \begin{aligned}
& \\
& \text { where } \\
& \\
& R=\bigcup_{e \in S} X_{e}
\end{aligned}
$$

Relationship (as before)

Timestamps

- Again, use co-occurrences for weights w_{T}

Co-occurrences on Web Scale

Marvel's The Avengers

Release Date: May 04, 2012

Starring: Gwyneth Paltrow, Chris Evans, Scarlett Johansson, Chris Hemsworth, Tom Hiddleston, Robert Stellan Skarsgard, Clark Gregg, Jeremy Renner, Mark Ruffalo, Cobie Smulders, Robert Downey Jr.

Marvel Studios presents in association with Paramount Pictures
"Marvel's The Avengers"--the super hero team up of a lifetime,
featuring iconic Marvel super heroes Iron Man, the Incredible Hulk,
Thor, Captain America, Hawkeye and Black Widow. When an unexpected enemy emerges that threatens global safety and security, Nick Fury, Director of the ... more
"Robert Downey Jr" and "May 4, 2012" occurs 173 times on 71 different webpages US Release date of The Avengers Use MapReduce on 10B web pages (10k+ machines)

Complete Optimization Problem

- Generalized earlier coverage function to linear combination of weighted coverage functions

$$
F(S)=\sum_{r \in R} w_{R}(r)+\sum_{e \in S} w_{T}\left(t_{e}\right) \quad \begin{gathered}
\text { where } \\
R=\bigcup_{e \in S} X_{e}
\end{gathered}
$$

- Goal: $\max _{|S| \leq k} F(S)$
- Still NP-hard
(because generalization of NP-hard problem)
- How can we actually optimize this function?
- What structure is there that will help us do this efficiently?
- Any questions so far?

Approximate Solution

For this optimization problem, Greedy produces a solution S
s.t. $F(S) \geq(1-1 / e)^{*} O P T \quad\left(F(S) \geq 0.63^{*} O P T\right)$
[Nemhauser, Fisher, Wolsey '78]

- Claim holds for functions $\mathrm{F}(\cdot)$ which are:
- Submodular, Monotone, Normal, Non-negative (discussed next)

Submodularity: Definition 1

Definition:

- Set function $\boldsymbol{F}(\cdot)$ is called submodular if: For all $\mathbf{P}, \mathbf{Q} \subseteq \mathbf{U}$:

$$
F(P)+F(Q) \geq F(P \cup Q)+F(P \cap Q)
$$

Submodularity: Definition 2

- Checking the previous definition is not easy in practice
- Substitute $P=\boldsymbol{A} \cup\{d\}$ and $Q=B$ where $A \subseteq B$ and $\boldsymbol{d} \notin B$ in the definition above

From before: $F(P)+F(Q) \geq F(P \cup Q)+F(P \cap Q)$

$$
F(A \cup\{d\})+F(B) \geq F(A \cup\{d\} \cup B)+F((A \cup\{d\}) \cap B)
$$

$$
\begin{aligned}
& F(A \cup\{d\})+F(B) \geq F(B \cup\{d\})+F(A) \\
& F(A \cup\{d\})-F(A) \geq F(B \cup\{d\})-F(B)
\end{aligned}
$$

Common definition of Submodularity

Submodularity: Definition 2

- Diminishing returns characterization
$\underset{\text { Gain of adding } d \text { to a small set }}{F(A \cup d)-F(A)} \geq \underbrace{F(B \cup d)-F(B)}_{\text {Gain of adding d to a large set }}$

Submodularity: Diminishing Returns

$\underbrace{F(\boldsymbol{A} \cup \boldsymbol{d})-\boldsymbol{A})}_{\text {Gain of adding } d \text { to a small set }} \geq \underbrace{F(B \cup \boldsymbol{B})-F(B)}_{\text {Gain of adding d to a large set }}$

Submodularity: An important property

Let $F_{1} \ldots F_{M}$ be submodular functions and $\lambda_{1} \ldots \lambda_{\mathrm{M}} \geq 0$ and let S denote some solution set, then the non-negative linear combination $\mathrm{F}(\mathrm{S})$ (defined below) of these functions is also submodular.

$$
F(S)=\sum_{i=1}^{M} \lambda_{i} F_{i}(S)
$$

Submodularity: Approximation Guarantee

When maximizing a submodular function with cardinality constraints, Greedy produces a solution S for which $F(S) \geq(1-1 / e)^{*} O P T$ i.e., $(F(S) \geq 0.63 * O P T)$
 [Nemhauser, Fisher, Wolsey '78]

- Claim holds for functions $F(\cdot)$ which are:
- Monotone: if $A \subseteq B$ then $F(A) \leq F(B)$
- Normal: F(\{\})=0
- Non-negative: For any $A, F(A) \geq 0$
- In addition to being submodular

Back to our Timeline Problem

Simple Coverage Model

- Suppose we are given a set of events E
- Each event e covers a set X_{e} of relationships U
- For a set of events $S \subseteq E$ we define:

$$
F(S)=\left|\bigcup_{e \in S} X_{e}\right|
$$

- Goal: We want to $\max _{|S| \leq k} F(S) \quad$ Cardinality
- Note: $\mathrm{F}(\mathrm{S})$ is a set function: $F(S): 2^{E} \rightarrow \mathbb{N}$

Simple Coverage: Submodular?

- Claim: $F(S)=\left|\bigcup_{e \in S} X_{e}\right|$ is submodular.

Gain of adding X_{e} to a smaller set

Gain of adding X_{e} to a larger set

$F\left(A \cup X_{e}\right)-F(A) \geq F\left(B \cup X_{e}\right)-F(B)$
$\forall A \subseteq B$

Simple Coverage: Other Properties

- Claim: $F(S)=\left|\bigcup_{e \in S} X_{e}\right|$ is normal \& monotone
- Normality: When S is empty, $\bigcup_{e \in S} X_{e}$ is empty.
- Monotonicity: Adding a new event to S can never decrease the number of relationships covered by S .
- What about non-negativity?

Monotone: if $A \subseteq B$ then $F(A) \leq F(B)$ Normal: $F(\})=0$
Non-negative: For any $\boldsymbol{A}, F(A) \geq 0$

Summary so far

	Simple Coverage	Weighted Coverage (Relationships)	Weighted Coverage (Timestamps)	Complete Optimization Problem
Submodularity				
Monotonicity	$\sqrt{ }$			
Normality				

Weighted Coverage (Relationships)

$$
F(S)=\sum_{r \in R} w(r) \quad w: R \rightarrow \mathbb{R}^{+} \quad \underset{R}{\text { where }} \underset{e \in S}{ } X_{e}
$$

- Claim: $F(S)$ is submodular.
- Consider two sets A and B s.t. $A \subseteq B \subseteq S$ and let us consider an evente $\notin B$
- Three possibilities when we add e to A or B:
- Case 1: e does not cover any new relationships w.r.t both A and B

$$
F(A \cup\{e\})-F(A)=0=F(B \cup\{e\})-F(B)
$$

Weighted Coverage (Relationships)

$$
F(S)=\sum_{r \in R} w(r) \quad w: R \rightarrow \mathbb{R}^{+}
$$

- Claim: $F(S)$ is submodular.
- Three possibilities when we add e to A or B:
- Case 2: e covers some new relationships w.r.t A but not w.r.t B
$\mathrm{F}(\mathrm{A} \cup\{\mathrm{e}\})-\mathrm{F}(\mathrm{A})=v$ where $v \geq 0$
$F(B \cup\{e\})-F(B)=0$
Therefore, $F(A \cup\{e\})-F(A) \geq F(B \cup\{e\})-F(B)$

Weighted Coverage (Relationships)

$$
F(S)=\sum_{r \in R} w(r) \quad w: R \rightarrow \mathbb{R}^{+}
$$

- Claim: $\mathrm{F}(\mathrm{S})$ is submodular.
- Three possibilities when we add e to A or B:
- Case 3: e covers some new relationships w.r.t both A and B

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~A} \cup\{e\})-\mathrm{F}(\mathrm{~A})=v \text { where } v \geq 0 \\
& \mathrm{~F}(\mathrm{~B} \cup\{e\})-\mathrm{F}(\mathrm{~B})=u \text { where } u \geq 0
\end{aligned}
$$

But, $v \geq u$ because e will always cover fewer new relationships w.r.t B than w.r.t A

Weighted Coverage (Relationships)

$$
F(S)=\sum_{r \in R} w(r) \quad w: R \rightarrow \mathbb{R}^{+} \quad \begin{gathered}
\text { where } \\
R= \\
e \in S
\end{gathered} X_{e}
$$

- Claim: $F(S)$ is monotone and normal.
- Normality: When S is empty, $R=\bigcup_{e \in S} X_{e}$ is empty.
- Monotonicity: Adding a new event to S can never decrease the number of relationships covered by S.

Summary so far

$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Simple } \\ \text { Coverage }\end{array} \begin{array}{c}\text { Weighted } \\ \text { Coverage } \\ \text { (Relationships) }\end{array} \begin{array}{c}\text { Weighted } \\ \text { Coverage } \\ \text { (Timestamps) }\end{array} \begin{array}{c}\text { Complete } \\ \text { Optimization } \\ \text { Problem }\end{array}\right]$

Weighted Coverage (Timestamps)

$$
F(S)=\sum_{e \in S} w_{T}\left(t_{e}\right)
$$

- Claim: $F(S)$ is submodular, monotone and normal
- Analogous arguments to that of weighted coverage (relationships) are applicable

Summary so far

	${ }_{\substack{\text { simple } \\ \text { coverge }}}^{\text {cen }}$		Weime	$\begin{aligned} & \text { Complete } \\ & \text { Optimization } \\ & \text { Problem } \end{aligned}$
Submoduratity	\checkmark	\checkmark	\checkmark	
Monotosicity	\checkmark	\checkmark	\checkmark	
Noornaity	\checkmark	\checkmark	\checkmark	

Complete Optimization Problem

- Generalized earlier coverage function to nonnegative linear combination of weighted coverage functions

$$
F(S)=F_{1}(S)+F_{2}(S) \quad \begin{aligned}
& \text { where } \\
& R=\bigcup_{e \in S} X_{e}
\end{aligned}
$$

- Goal: $\max _{|S| \leq k} F(S)$

$$
|S| \leq k
$$

- Claim: $F(A)$ is submodular, monotone and normal

Complete Optimization Problem

- Submodularity: $F(S)$ is a non-negative linear combination of two submodular functions. Therefore, it is submodular too.
- Normality: $F_{1}(\{ \})=0=F_{2}(\{ \})$

$$
F_{1}(\{ \})+F_{2}(\{ \})=0
$$

- Monotonicity: Let $A \subseteq B \subseteq S$,

$$
\begin{aligned}
& F_{1}(A) \leq F_{1}(B) \text { and } F_{2}(A) \leq F_{2}(B) \\
& F_{1}(A)+F_{2}(A) \leq F_{1}(B)+F_{2}(B)
\end{aligned}
$$

Summary so far

	${ }_{\substack{\text { simple } \\ \text { coverge }}}^{\text {cen }}$			$\begin{gathered} \text { Complete } \\ \text { Optimizatio } \\ \text { Problem } \end{gathered}$
Submoduratity	\checkmark	\checkmark	\checkmark	\checkmark
Monotosicity	\checkmark	\checkmark	\checkmark	\checkmark
Noornaity	\checkmark	\checkmark	\checkmark	\checkmark

Lazy Optimization of Submodular Functions

Greedy Solution

Greedy

```
Marginal gain:
    F(S\cupx)-F(S)
a }
b 
c #
d }
e
\(\square\)
```

Add element with highest marginal gain

- Greedy Algorithm is Slow!
- At each iteration, we need to evaluate marginal gains of all the remaining elements
- Runtime O(|U| * K) for selecting K elements out of the set U

Speeding up Greedy

- In round i:
- So far we have $S_{i-1}=\left\{\begin{array}{lll}e_{1} & \ldots & e_{i-1}\end{array}\right\}$
- Now we pick an element e $\notin \mathrm{S}_{\mathrm{i}-1}$ which maximizes the marginal benefit $\Delta_{i}=F\left(S_{i-1} \cup\{e\}\right)-F\left(S_{i-1}\right)$
- Key observation:
- Marginal gain of any element e can never increase!
- For every element e:
$\Delta_{\mathrm{i}}(\mathrm{e}) \geq \Delta_{\mathrm{j}}(\mathrm{e})$ for all iterations $\mathrm{i}<\mathrm{j}$

Lazy Greedy

- Idea:
- Use Δ_{i} as upper-bound on $\Delta_{j}(j>i)$

Upper bound on

- Lazy Greedy:
- Keep an ordered list of marginal benefits Δ_{i} from previous iteration Marginal gain Δ_{1}

- Re-evaluate Δ_{i} only for top node
- Re-sort and prune
\square
\square
\square
e \square
$F(A \cup\{d\})-F(A) \geq F(B \cup\{d\})-F(B) \quad A \subseteq B$

Lazy Greedy

- Idea:
- Use Δ_{i} as upper-bound on $\Delta_{j}(j>i)$

Upper bound on
Lazy Greedy:

- Keep an ordered list of marginal benefits Δ_{i} from previous iteration Marginal gain Δ_{2}

- Re-evaluate Δ_{i} only for top node
- Re-sort and prune
\square
\square
\square
e \square
$F(A \cup\{d\})-F(A) \geq F(B \cup\{d\})-F(B) \quad A \subseteq B$

Lazy Greedy

- Idea:
- Use Δ_{i} as upper-bound on $\Delta_{j}(j>i)$

Upper bound on

- Lazy Greedy:
- Keep an ordered list of marginal benefits Δ_{i} from previous iteration Marginal gain Δ_{2}

d \square $A_{2}=\{a, b\}$
- Re-evaluate Δ_{i} only for top node
- Re-sort and prune
\square

$F(A \cup\{d\})-F(A) \geq F(B \cup\{d\})-F(B) \quad{ }_{A \subseteq B}$

Speed Up of Lazy Greedy Algorithm

- Lazy greedy offers significant speed-up over traditional greedy implementations in practice.

References

- Althoff et. al., TimeMachine: Timeline Generation for Knowledge-Base Entities, KDD 2015
- Leskovec et. al., Cost-effective Outbreak Detection in Networks, KDD 2007
- Andreas Krause, Daniel Golovin, Submodular Function Maximization
- ICML Tutorial: http://submodularity.org/submodularity-icml-part1-slides-prelim.pdf
- Learning and Testing Submodular Functions: http://grigory.us/cis625/lecture3.pdf
- UW Research by Jeff Bilmes (ECE)

