Submodular Optimization

CS547 Machine Learning for Big Data Tim Althoff PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

Motivation

- Learned about: LSH/Similarity search & recommender systems
- Search: "jaguar" Google

Uncertainty about the user's information need

- Don't put all eggs in one basket!
- Relevance isn't everything need diversity!

Many applications need diversity!

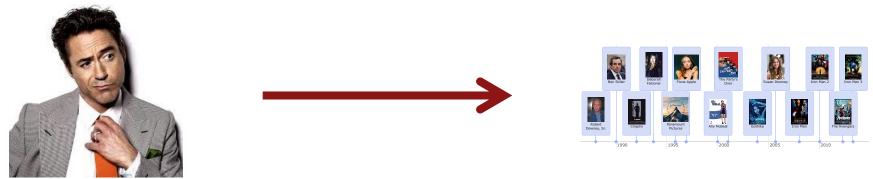
Recommendation:
 NETFLIX

Summarization:
 "Robert Downey Jr."
 WIKIPEDIA

News Media:

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Automatic Timeline Generation



Person

Timeline

 Goal: Timeline should express their relationships to other people through events (personal, collaboration, mentorship, etc.)

Why timelines?

- Easier: Wikipedia article is 18 pages long
- Context: Through relationships & event descriptions
- Exploration: Can "jump" to other people

01/02/2023

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

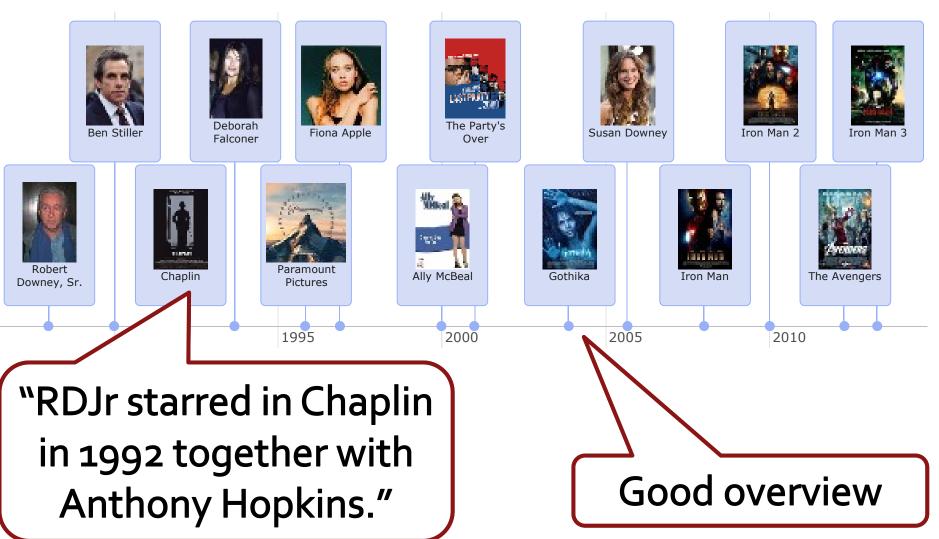
Problem Definition

Given:

- Relevant relationships
- Events that each cover some relationships

 Goal: Given a large set of events, pick a small subset that explains most known relationships ("the timeline") Demo available at: http://cs.stanford.edu/~althoff/timemachine/demo.html

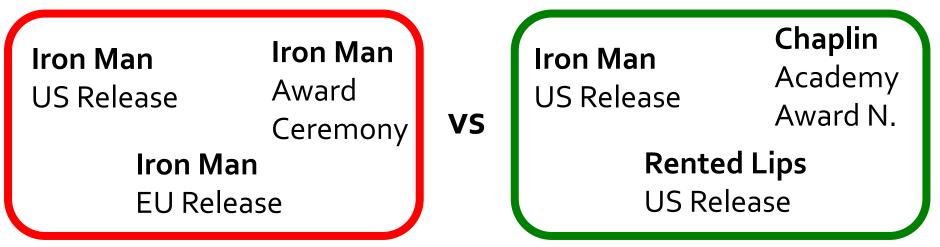
Example Timeline



01/02/2023

Why diversity?

User studies: People hate redundancy!



Want to see more diverse set of relationships

Diversity as Coverage

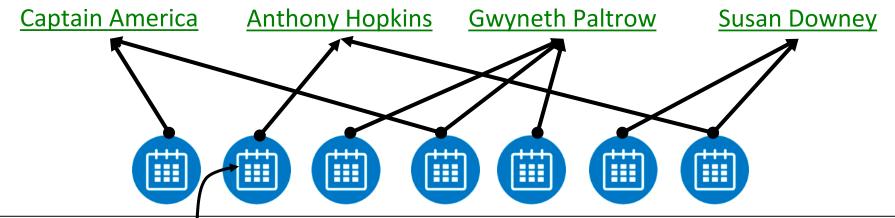
Encode Diversity as Coverage

- Idea: Encode diversity as coverage problem
 Example: Selecting events for timeline
 - Try to cover all important relationships

What is being covered?

Q: What is being covered?

A: Relationships



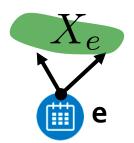
Downey Jr. starred in *Chaplin* together with Anthony Hopkins

Q: Who is doing the covering?A: Timeline Events

Simple Coverage Model

Suppose we are given a set of events E

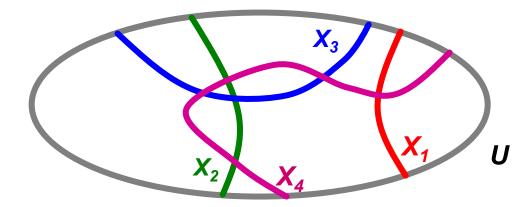
- Each event **e** covers a set $X_e \subseteq U$ of relationships
- For a set of events $S \subseteq E$ we define:



- $F(S) = \left| \bigcup_{e \in S} X_e \right|$ • Goal: We want to $\max_{|S| \le k} F(S)$ Cardinality Constraint
- Note: F(S) is a set function: $F(S) : 2^E \to \mathbb{N}$

Maximum Coverage Problem

• Given universe of elements $U = \{u_1, \dots, u_n\}$ and sets $\{X_1, \dots, X_m\} \subseteq U$



U: all relationships X_i: relationships covered by event i

Goal: Find set of k events X₁...X_k covering most of U

 More precisely: Find set of k events X₁...X_k whose size of the union is the largest

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Simple Heuristic: Greedy Algorithm:

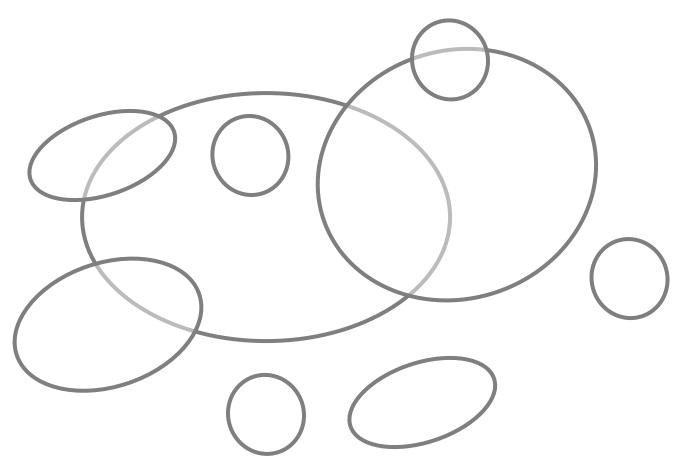
- Start with S₀ = {}
- For i = 1...k

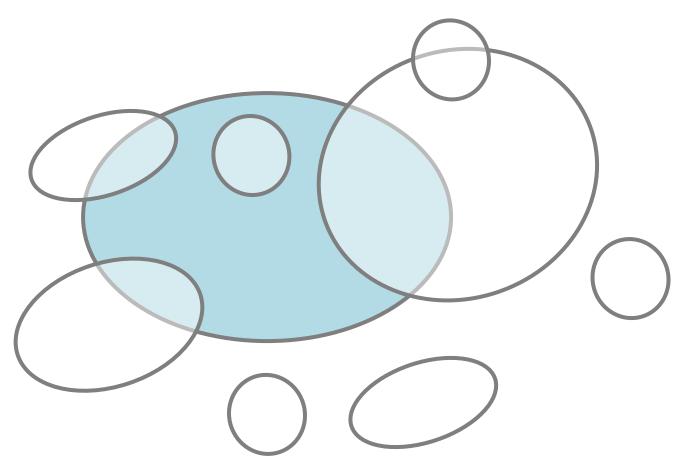
• Take event **e** that max $F(S_{i-1} \cup e)$

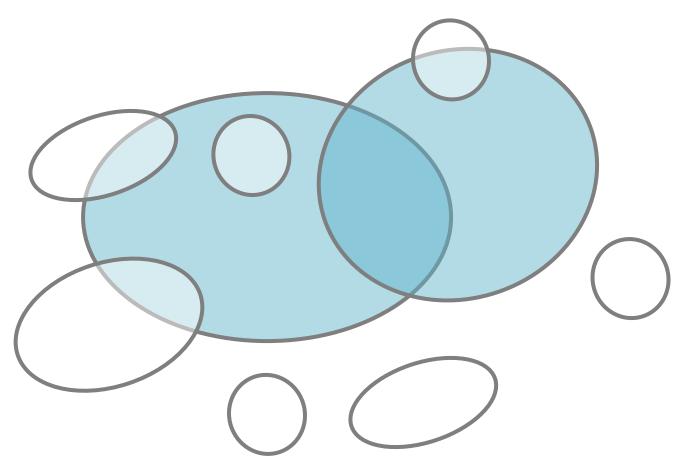
• Let
$$S_i = S_{i-1} \cup \{e\}$$

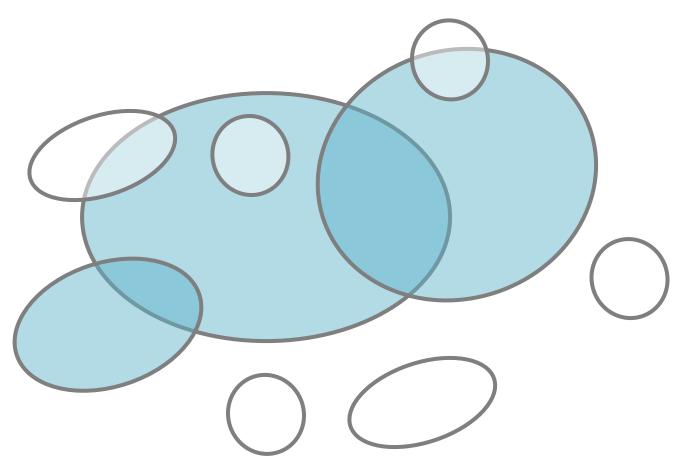
- Eval. F({e₁}), ..., F({e_m}), pick best (say e₁)
- Eval. F({e₁} u {e₂}), ..., F({e₁} u {e_m}), pick best (say e₂)
- Eval. F({e₁, e₂} u {e₃}), ..., F({e₁, e₂} u {e_m}), pick best
- And so on...

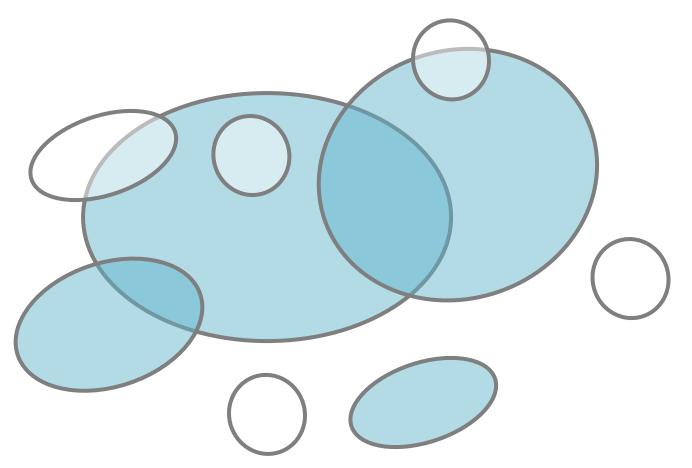
 $F(S) = \left| \bigcup_{e \in S} X_e \right|$



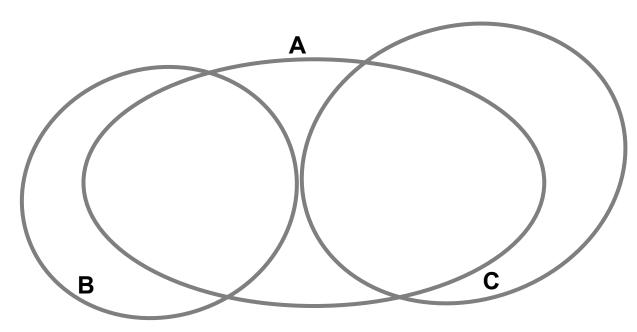








When Greedy Heuristic Fails?



- Goal: Maximize the size of the covered area with two sets
- Greedy first picks A and then C
- But the optimal way would be to pick B and C

Bad News & Good News

- Bad news: Maximum Coverage is NP-hard
 Related to Set Cover Problem
- Good news: Good approximations exist
 - Problem has certain structure to it that even simple greedy algorithms perform reasonably well
 - Details in 2nd half of lecture

Now: Generalize our objective for timeline generation

Issue 1: Not all relationships are created equal

Objective values all relationships equally

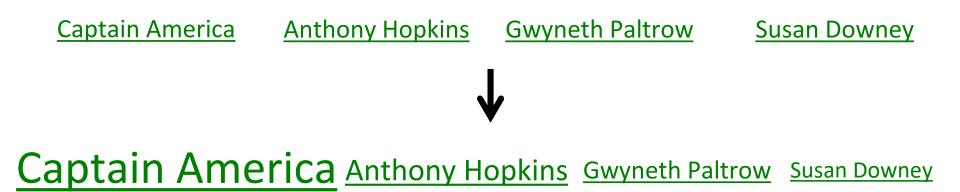
$$F(S) = \left| \bigcup_{e \in S} X_e \right| = \sum_{r \in R} 1 \text{ where } R = \bigcup_{e \in S} X_e$$

- Unrealistic: Some relationships are more important than others
 - use different weights ("weighted coverage function")

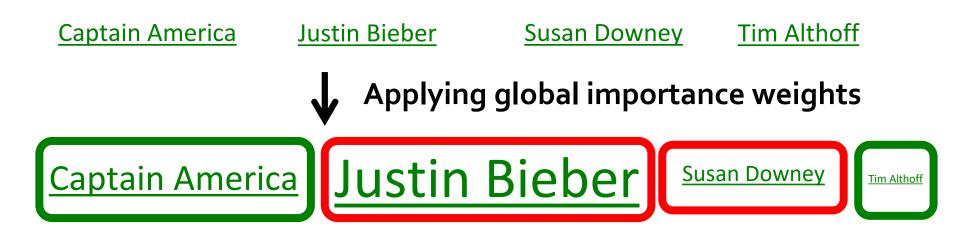
$$F(S) = \sum_{r \in B} w(r)$$

Example weight function

- Use global importance weights
- How much interest is there?
- Could be measured as
 - w(X) = # search queries for person X
 - w(X) = # Wikipedia article views for X
 - w(X) = # news article mentions for X



Better weight function



- Some relationships are not (very) globally important but (not) highly relevant to timeline
- Need relevant to timeline instead of globally relevant
 w(Susan Downey | RDJr) > w(Justin Bieber | RDJr)

Capturing relevance to timeline

- Can use co-occurrence statistics w(X | RDJr) = #(X and RDJr) / (#(RDJr) * #(X))
 - Similar: Pointwise mutual information (PMI)
 - How often do X and Y occur together compared to what you would expect if they were independent
 - Accounts for popular entities (e.g., Justin Bieber)

Issue 2: Differentiating between events

- How to differentiate between two events that cover the same relationships?
- Example: Robert and Susan Downey
 Event 1: Wedding, August 27, 2005
 Event 2: Minor charity event, Nov 11, 2006
- We need to be able to distinguish these!

Scoring of event timestamps

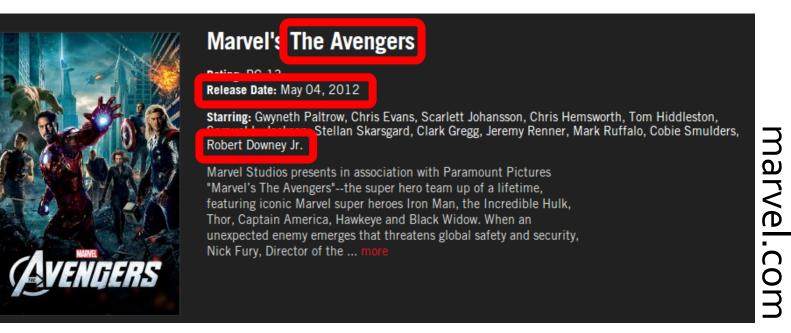
 Further improvement when we not only score relationships but also score the event timestamp

$$F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e)$$
 where

$$R = \bigcup_{e \in S} X_e$$
Relationship (as before) Timestamps
• Again, use co-occurrences for weights w_T

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Co-occurrences on Web Scale



"Robert Downey Jr" and *"May 4, 2012"* occurs 173 times on 71 different webpages

- US Release date of *The Avengers*
- Use MapReduce on 10B web pages (10k+ machines)

Complete Optimization Problem

 Generalized earlier coverage function to linear combination of weighted coverage functions

$$F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e) \qquad \text{where} \\ R = \bigcup_{e \in S} X_e$$

• Goal:
$$\max_{|S| \le k} F(S)$$

Still NP-hard (because generalization of NP-hard problem)

I

Next

- How can we actually optimize this function?
- What structure is there that will help us do this efficiently?

Any questions so far?

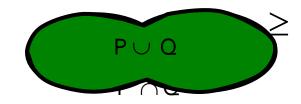
Approximate Solution

- For this optimization problem, <u>Greedy</u> produces a solution S s.t. $F(S) \ge (1-1/e)*OPT$ ($F(S) \ge 0.63*OPT$) [Nemhauser, Fisher, Wolsey '78]
- Claim holds for functions F(·) which are:
 - Submodular, Monotone, Normal, Non-negative (discussed next)

Submodularity: Definition 1

Definition:

Set function *F(·)* is called submodular if:
 For all *P,Q⊆U*:
 F(P) + F(Q) ≥ F(P∪Q) + F(P∩Q)



+

Submodularity: Definition 2

- Checking the previous definition is not easy in practice
- Substitute P = A ∪ {d} and Q = B where A ⊂ B and d ∉ B in the definition above
 From before: F(P) + F(Q) ≥ F(P∪Q) + F(P∩Q)

 $F(A \cup \{d\}) + F(B) \ge F(A \cup \{d\} \cup B) + F((A \cup \{d\}) \cap B)$

 $F(A \cup \{d\}) + F(B) \ge F(B \cup \{d\}) + F(A)$

 $F(A \cup \{d\}) - F(A) \ge F(B \cup \{d\}) - F(B)$

Common definition of Submodularity

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

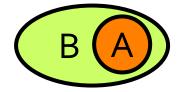
Submodularity: Definition 2

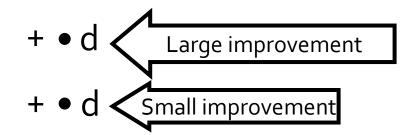
Diminishing returns characterization

$$F(A \cup d) - F(A) \geq F(B \cup d) - F(B)$$

Gain of adding **d** to a small set

Gain of adding **d** to a large set



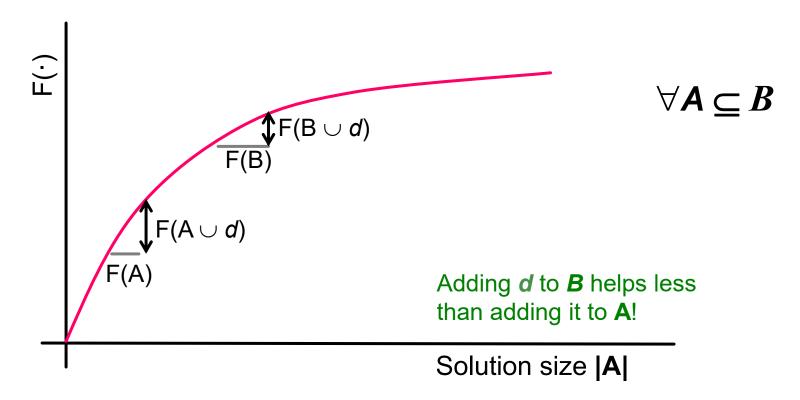


Submodularity: Diminishing Returns

 $F(A \cup d) - F(A) \geq F(B \cup d) - F(B)$

Gain of adding **d** to a small set

Gain of adding **d** to a large set



Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Submodularity: An important property

Let $F_1 ldots F_M$ be submodular functions and $\lambda_1 ldots \lambda_M \ge 0$ and let S denote some solution set, then the non-negative linear combination F(S)(defined below) of these functions is also submodular.

$$F(S) = \sum_{i=1}^{M} \lambda_i F_i(S)$$

Submodularity: Approximation Guarantee

- When maximizing a submodular function with cardinality constraints, Greedy produces a solution S for which $F(S) \ge (1-1/e)*OPT$ i.e., $(F(S) \ge 0.63*OPT)$ [Nemhauser, Fisher, Wolsey '78]
- Claim holds for functions F(·) which are:
 - Monotone: if A _ B then F(A) ≤ F(B)
 - Normal: F({})=0
 - Non-negative: For any A, F(A) ≥0
 - In addition to being submodular

01/02/2023

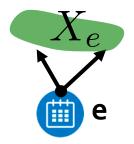
Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Back to our Timeline Problem

Simple Coverage Model

Suppose we are given a set of events E

- Each event e covers a set X_e of relationships U
- For a set of events $S \subseteq E$ we define:



 $F(S) = \bigcup_{e \in S} X_e$ • Goal: We want to $\max_{|S| \le k} F(S)$ Cardinality Constraint

• Note: F(S) is a set function: $F(S) : 2^E \to \mathbb{N}$

Simple Coverage: Submodular?

• Claim: $F(S) = \left| \bigcup_{e \in S} X_e \right|$ is submodular.

A

Gain of adding X_e to a smaller set

 $\forall A \subset B$

Gain of adding X_e to a larger set

$$F(A \cup X_e) - F(A) \geq F(B \cup X_e) - F(B)$$

01/02/2023

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Simple Coverage: Other Properties

• Claim: $F(S) = \left| \bigcup_{e \in S} X_e \right|$ is normal & monotone

• Normality: When S is empty, $\bigcup_{e \in S} X_e$ is empty.

 Monotonicity: Adding a new event to S can never decrease the number of relationships covered by S.

What about non-negativity?

Monotone: if $A \subseteq B$ then $F(A) \leq F(B)$ Normal: $F({})=0$ Non-negative: For any A, $F(A) \geq 0$

Summary so far

	Simple Coverage	Weighted Coverage (Relationships)	Weighted Coverage (Timestamps)	Complete Optimization Problem
Submodularity	\checkmark			
Monotonicity	\checkmark			
Normality	\checkmark			

$$F(S) = \sum_{r \in R} w(r) \qquad w : R \to \mathbb{R}^+ \qquad \underset{e \in S}{\operatorname{where}} X_e$$

Claim: F(S) is submodular.

- Consider two sets A and B s.t. A \subseteq B \subseteq S and let us consider an event e
 eq B
- Three possibilities when we add e to A or B:
 - Case 1: e does not cover any new relationships w.r.t both A and B

 $F(A \cup \{e\}) - F(A) = 0 = F(B \cup \{e\}) - F(B)$

1. . . .

$$F(S) = \sum_{r \in R} w(r) \qquad w : R \to \mathbb{R}^+$$

Claim: F(S) is submodular.

- Three possibilities when we add e to A or B:
 - Case 2: e covers some new relationships w.r.t A but not w.r.t B
 F(A U {e}) F(A) = v where v ≥ 0
 F(B U {e}) F(B) = 0
 - Therefore, $F(A \cup \{e\}) F(A) \ge F(B \cup \{e\}) F(B)$

$$F(S) = \sum_{r \in R} w(r) \qquad w : R \to \mathbb{R}^+$$

Claim: F(S) is submodular.

- Three possibilities when we add e to A or B:
 - Case 3: e covers some new relationships w.r.t both A and B

$$F(A \cup \{e\}) - F(A) = v \text{ where } v \ge 0$$

 $F(B \cup \{e\}) - F(B) = u$ where $u \ge 0$

But, $v \ge u$ because e will always cover fewer new relationships w.r.t B than w.r.t A

$$F(S) = \sum_{r \in R} w(r) \qquad w : R \to \mathbb{R}^+ \qquad R = \bigcup_{e \in S} X_e$$

- Claim: F(S) is monotone and normal.
- Normality: When S is empty, $R = \bigcup_{e \in S} X_e$ is empty.
- Monotonicity: Adding a new event to S can never decrease the number of relationships covered by S.

.

Summary so far

	Simple Coverage	Weighted Coverage (Relationships)	Weighted Coverage (Timestamps)	Complete Optimization Problem
Submodularity	\checkmark	\checkmark		
Monotonicity	\checkmark	\checkmark		
Normality	\checkmark	\checkmark		

Weighted Coverage (Timestamps)

$$F(S) = \sum_{e \in S} w_T(t_e)$$

 Claim: F(S) is submodular, monotone and normal

 Analogous arguments to that of weighted coverage (relationships) are applicable

Summary so far

	Simple Coverage	Weighted Coverage (Relationships)	Weighted Coverage (Timestamps)	Complete Optimization Problem
Submodularity	\checkmark	\checkmark	\checkmark	
Monotonicity	\checkmark	\checkmark	\checkmark	
Normality	\checkmark	\checkmark	\checkmark	

Complete Optimization Problem

 Generalized earlier coverage function to nonnegative linear combination of weighted coverage functions

$$F(S) = \begin{bmatrix} F_1(S) \\ F_2(S) \end{bmatrix} + \begin{bmatrix} F_2(S) \\ R = \bigcup_{e \in S} X_e \\ e \in S \end{bmatrix}$$
where

Claim: F(A) is submodular, monotone and normal

Complete Optimization Problem

 Submodularity: F(S) is a non-negative linear combination of two submodular functions. Therefore, it is submodular too.

• Normality:
$$F_1({}) = 0 = F_2({})$$

 $F_1({}) + F_2({}) = 0$

Monotonicity: Let $A \subseteq B \subseteq S$, $F_1(A) \leq F_1(B) \text{ and } F_2(A) \leq F_2(B)$ $F_1(A) + F_2(A) \leq F_1(B) + F_2(B)$

Summary so far

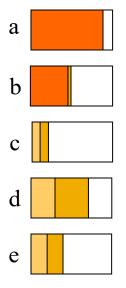
	Simple Coverage	Weighted Coverage (Relationships)	Weighted Coverage (Timestamps)	Complete Optimization Problem
Submodularity	\checkmark	\checkmark	\checkmark	\checkmark
Monotonicity	\checkmark	\checkmark	\checkmark	\checkmark
Normality	\checkmark	\checkmark	\checkmark	\checkmark

Lazy Optimization of Submodular Functions

Greedy Solution

Greedy

Marginal gain: F(S∪x)-F(S)



Greedy Algorithm is Slow!

- At each iteration, we need to evaluate marginal gains of all the remaining elements
- Runtime O(|U| * K) for selecting K elements out of the set U

Add element with highest marginal gain

Speeding up Greedy

In round i:

- So far we have $S_{i-1} = \{e_1 \dots e_{i-1}\}$
- Now we pick an element e ∉ S_{i-1} which maximizes the marginal benefit Δ_i = F(S_{i-1} U {e}) − F(S_{i-1})

Key observation:

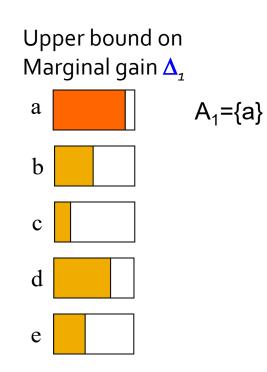
Marginal gain of any element e can never increase!

• For every element e: $\Delta_i(e) \ge \Delta_j(e)$ for all iterations i < j

Lazy Greedy

Idea:

- Use ∆_i as upper-bound on ∆_j (j > i)
 Lazy Greedy:
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

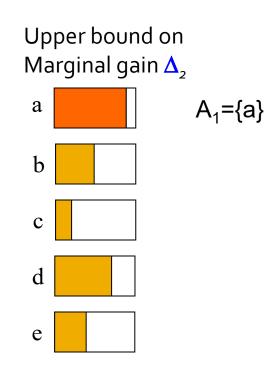


$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) |_{A \subseteq B}$

Lazy Greedy

Idea:

- Use ∆_i as upper-bound on ∆_j (j > i)
 Lazy Greedy:
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

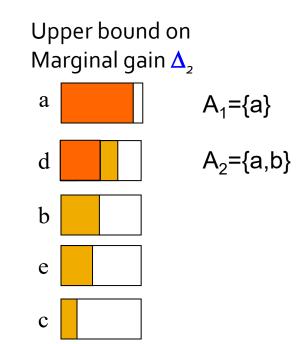


$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) |_{A \subseteq B}$

Lazy Greedy

Idea:

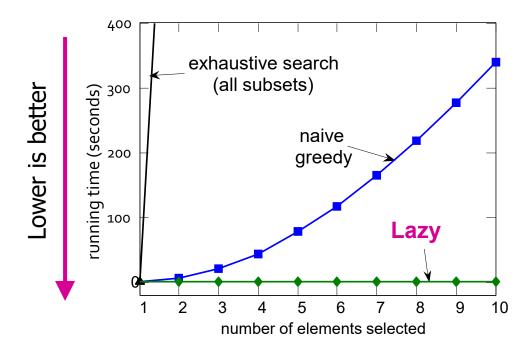
- Use ∆_i as upper-bound on ∆_j (j > i)
 Lazy Greedy:
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune



$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) |_{A \subseteq B}$

Speed Up of Lazy Greedy Algorithm

 Lazy greedy offers significant speed-up over traditional greedy implementations in practice.



References

- Althoff et. al., TimeMachine: Timeline Generation for Knowledge-Base Entities, KDD 2015
- Leskovec et. al., Cost-effective Outbreak Detection in Networks, KDD 2007
- Andreas Krause, Daniel Golovin, Submodular Function Maximization
- ICML Tutorial:
 - http://submodularity.org/submodularity-icml-part1slides-prelim.pdf
- Learning and Testing Submodular Functions: <u>http://grigory.us/cis625/lecture3.pdf</u>
- UW Research by Jeff Bilmes (ECE)