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Motivation

Learned about: LSH/Similarity search &
recommender systems

Search: “jaguar’f ' JAGUAR

Google

Uncertainty about the user’s information need

Don’t put all eggs in one basket!
Relevance isn’t everything — need diversity!
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Many applications need diversity!

Recommendation:

NETFLIX

Summarization:
“Robert Downey Jr.”

WIKIPEDIA

News Media:

1.‘ "
YAHOO!
NEWS
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Automatic Timeline Generation

Timeline

Goal: Timeline should express their relationships to other

people through events (personal, collaboration,
mentorship, etc.)

Why timelines?
Easier: Wikipedia article is 18 pages long
Context: Through relationships & event descriptions
Exploration: Can “jump” to other people
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Problem Definition

Given:
Relevant relationships
Events that each cover some relationships

Goal: Given a large set of events, pick a small
subset that explains most known
relationships (“the timeline”)
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Demo available at: http://cs.stanford.edu/~althoff/timemachine/demo.html

Example Timeline

ﬁ %
H Ei; q T '| -
Deborah The Party's

Ben Stiller Fiona Apple Over

Falconer Susan Downey Iron Man 2 Iron Man 3

Robert - Paramount = . : —
Downey, Sr. Chaplin Pictures Ally McBeal Gothika Iron Man The Avengers
1995 2000 2005 2010

“"RDJr starred in Chaplin\

in 1992 together with _
Anthony Hopklns " Good overview ]
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http://cs.stanford.edu/~althoff/timemachine/demo.html

Why diversity?

User studies: People hate redundancy!

Chaplin
Academy
Award N.

Rented Lips
US Release

Iron Man Iron Man

US Release Award
Ceremony | VS

Iron Man
US Release

Iron Man

EU Release

Want to see more diverse set of relationships




Diversity as Coverage



Encode Diversity as Coverage

= ldea: Encode diversity as coverage problem
= Example: Selecting events for timeline

* Try to cover all important relationships

@i!fibtﬂs

My 4 &
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What is being covered?

Q: What is being covered?
A: Relationships

Captain America Anthony Hopkins  Gwyneth Paltrow Susan Downey

Downey Jr. starred in Chaplin together with Anthony Hopkins

Q: Who is doing the covering?
A: Timeline Events
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Simple Coverage Model

Suppose we are given a set of events E

= Each event e coversaset X, C U of
relationships

For a set of events § C F we define:

F(S) = J Xx.

ecS
Goal: We want to max F'(S)  Cardinality
|S|<Ek Constraint

Note: F(S) is a set function: F(S): 2% — N

01/02/2023 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 ~  Pagell



Maximum Coverage Problem

Given universe of elements U = {uy,...,u,}
andsets {Xi,..., X} CU

U: all relationships
X:: relationships
covered by event |

Goal: Find set of k events X,...X, covering most of U

More precisely: Find set of k events X,...X, whose size of
the union is the largest
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Simple Greedy Heuristic

Simple Heuristic: Greedy Algorithm:
Start with S, = {}
Fori=1..k

Take event e that max F'(.5; 1 Ue)
Let S; = 5,1 U {6} F(5)

Example:
Eval. F({e,}), ..., F({e,,}), pick best (say e,)

Eval. F({e,} u {e,}), ..., F({e;} u {e}), pick best (say e,)
Eval. F({e,, e,} u {e;}), ..., F({e,, e,} u {e,}), pick best
And so on...
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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When Greedy Heuristic Fails?

C

Goal: Maximize the size of the covered area
with two sets

Greedy first picks A and then C
But the optimal way would be to pick B and C
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Bad News & Good News

Bad news: Maximum Coverage is NP-hard

Related to Set Cover Problem

Good news: Good approximations exist

Problem has certain structure to it that even
simple greedy algorithms perform reasonably well

Details in 29 half of lecture

Now: Generalize our objective for timeline
generation
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Issue 1: Not all relationships are created equal

Objective values all relationships equally

F(S) =

Uxe :ZIWhereR: UXe

ecS reR ecS

Unrealistic: Some relationships are more
important than others

use different weights (“weighted coverage function”)

F(S) =

01/02/2023

Z w(r) w:R— RT
rcR
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Example weight function

Use global importance weights
How much interest is there?

Could be measured as

= w(X) = # search queries for person X
= w(X) = # Wikipedia article views for X
= w(X) = # news article mentions for X

Captain America Anthony Hopkins  Gwyneth Paltrow Susan Downey

v

Captain America Anthony Hopkins Gwyneth Paltrow Susan Downey
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Better weight function

Captain America Justin Bieber Susan Downey Tim Althoff

¢ Applying global importance weights

Some relationships are not (very) globally

important but (not) highly relevant to timeline
Need relevant to timeline instead of globally
relevant

w(Susan Downey | RDJr) > w(Justin Bieber | RDJr)

01/02/2023
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Capturing relevance to timeline

Can use co-occurrence statistics
w(X | RDJr) = #(X and RDJr) / (#(RDJr) * #(X))
Similar: Pointwise mutual information (PMI)

How often do X and Y occur together compared to
what you would expect if they were independent

Accounts for popular entities (e.g., Justin Bieber)
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Issue 2: Differentiating between events

How to differentiate between two events that
cover the same relationships?

Example: Robert and Susan Downey
Event 1: Wedding, August 27, 2005
Event 2: Minor charity event, Nov 11, 2006

We need to be able to distinguish these!
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Scoring of event timestamps

Further improvement when we not only score
relationships but also score the event timestamp

F(S)=> wr(r)H> wr(t)

reR e€S where
/ \ U
ecS
Relationship (as before) Timestamps

Again, use co-occurrences for weights w
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Co-occurrences on Web Scale

Marvel’s The Avengers

moal_ . i 1N

Release Date: M ay 04,2012

Starrmg r;mnuth Paltrow, Chris Evans, Scarlett Johansson, Chris Hemsworth, Tom Hiddleston,
: Stellan Skarsgard, Clark Gregg, Jeremy Renner, Mark Ruffalo, Cobie Smulders,
Robert Downey Jr.

ation with Paramount Pictures

Q)
|:tt-m.|1p|f1 ft‘ me, 2
(D

N
O
3
‘Robert Downey Jr” and “May 4, 2012” occurs 173
times on 71 different webpages

US Release date of The Avengers
Use MapReduce on 10B web pages (10k+ machines)

01/02/2023 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 27



Complete Optimization Problem

Generalized earlier coverage function to
linear combination of weighted coverage

functions
where
F(S)=> wr(r)+ Y wr(te)
réR ecS It = U Ao
Goal: Mmax F(S) ces
|S|<k

Still NP-hard
(because generalization of NP-hard problem)
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Next

How can we actually optimize this function?
What structure is there that will help us do

this efficiently?

Any questions so far?
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Approximate Solution

For this optimization problem, Greedy

produces a solution S
s.t. F(S) =(1-1/e)*OPT (F(S) =0.63*0OPT)

[Nemhauser, Fisher, Wolsey '78]

Claim holds for functions F(:) which are:
= Submodular, Monotone, Normal, Non-negative

(discussed next)
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Submodularity: Definition 1

Definition:
Set function F(:) is called submodular if:
For all PQc U:

F(P) + F(Q) = F(PL Q) + F(PN Q)

oD +
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Submodularity: Definition 2

Checking the previous definition is not easy in practice

Substitute P=A v{d}and Q=B where

in the definition above
From before: F(P) + F(Q) = F(P_L Q) + F(PN Q)

F(Au{d}) + F(B) = F(Au{d} uB) + F((A_{d}) N B)

F(Au{d}) + F(B) = F(B(Ad}) + F(A)

F(AU{d}) - F(A) = F(BAd}) - F(B)

Common definition of Submodularity
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Submodularity: Definition 2

Diminishing returns characterization

F(A d)-F(A) 2 F(B d)-F(B)

Gain of adding d to a small set Gain of adding d to a large set

+ed < Large improvement |

+ o d < Smallimprovement|
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Submodularity: Diminishing Returns

F(A Ud)—-F(A) 2 F(B _d)-F(B)

Gain of adding d to a small set Gain of adding d to a large set
= VAcCB
F(B U d)
F(B)
F(AuU d)
F(A) Adding d to B helps less
than adding it to Al

01/02/2023

Solution size |A]
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Submodularity: An important property

Let F, ... F,, be submodular functions and
A, ...\, 20and let S denote some solution set,
then the non-negative linear combination F(S)

(defined below) of these functions is also
submodular.
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Submodularity: Approximation Guarantee

01/02

/2023

When maximizing a submodular function with
cardinality constraints, Greedy produces a
solution S for which F(S) = (1-1/e)*OPT

i.e., (F(S) =0.63*0OPT)

[Nemhauser, Fisher, Wolsey '78]

Claim holds for functions F(:) which are:
* Monotone: if A B then F(A) < F(B)

* Normal: F({})=0

* Non-negative: For any A, F(A) =0

= In addition to being submodular
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Back to our Timeline Problem



Simple Coverage Model

Suppose we are given a set of events E

= Each event e covers a set X of
relationships U

For a set of events § C F we define:

F(S) = J Xx.

ecS
Goal: We want to max F'(S) Cardinality
|S|<k & Constraint

Note: F(S) is a set function: F(S): 2% — N
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Simple Coverage: Submodular?

Claim: F(S) =

| J x| issubmodular.
ecsS

A%

Gain of adding X, to a smaller set X

Gain of adding X, to a larger set

F(A UX,)-F(A) = F(B UX,) - F(B) VAcCB

01/02/2023
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Simple Coverage: Other Properties

Claim: F(S) = U Xe| is normal & monotone
ecS

Normality: When S is empty, LGJSXG IS empty.

Monotonicity: Adding a new event to S can
never decrease the number of relationships
covered by S.

What about non-negativity?

Monotone: if A € B then F(A) < F(B)
Normal: F({})=0
Non-negative: For any A, F(A) =0
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Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity

Monotonicity

Normality
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Weighted Coverage (Relationships)

FS) =Y wr) w:R—RY po|)x

reR e€sS

Claim: F(S) is submodular.

Consider two sets Aand Bs.t. Ac Bc S and let us
consider an evente ¢ B
Three possibilities when we add e to A or B:

= Case 1: e does not cover any new relationships w.r.t
bothAandB

F(AU {e})-F(A)=0=FB U {e}) - F(B)
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Weighted Coverage (Relationships)

F(S):Zw(r) w:R— RT

reR

Claim: F(S) is submodular.

Three possibilities when we add e to A or B:

= Case 2: e covers some new relationships w.r.t A but not
w.r.t B

F(AU {e}) —F(A) = v where v >0
F(BU{e})-F(B)=0
Therefore, F(A U {e}) —F(A) > F(B U {e}) — F(B)
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Weighted Coverage (Relationships)

F(S):Zw(r) w:R— RT

reR

Claim: F(S) is submodular.

Three possibilities when we add e to A or B:

= Case 3: e covers some new relationships w.r.t both A and
B

F(AU {e}) —F(A)=v where v>0
F(BU {e})—F(B) =u where u>0

But, v > u because e will always cover fewer new
relationships w.r.t B than w.r.t A
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Weighted Coverage (Relationships)

01/02

FS) =S wlr) w:RoRE R-Ux.

ecsS
reR

Claim: F(S) is monotone and normal.
Normality: When S is empty, - GLGJSXG is empty.

Monotonicity: Adding a new event to S can
never decrease the number of relationships
covered by S.
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Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity \/ \/

Monotonicity \/ \/

Normality \/ \/
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Weighted Coverage (Timestamps)

F(S) = wrlt)

ecS

Claim: F(S) is submodular, monotone and
normal

Analogous arguments to that of weighted
coverage (relationships) are applicable
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Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity \/ \/ \/

Monotonicity \/ \/ \/

Normality \/ \/ \/
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Complete Optimization Problem

= Generalized earlier coverage function to non-
negative linear combination of weighted
coverage functions

where
- U«

ecS

= Goal: Mmax F
S| <k

= Claim: F(A) is submodular, monotone and
normal
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Complete Optimization Problem

Submodularity: F(S) is a non-negative linear
combination of two submodular functions.
Therefore, it is submodular too.

Normality: F,({}) =0 =F,({})
F.({H+F,({})=0

Monotonicity: Let Ac B cCS,
F,(A) <F,(B)and F,(A) <F,(B)
F.(A) + F,(A) < F,(B) + F,(B)
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Summary so far

Simple Weighted Weighted Complete
Coverage Coverage Coverage Optimization

(Relationships) | (Timestamps) Problem

Submodularity \/ \/ \/ \/

Monotonicity \/ \/ \/ \/

Normality \/ \/ \/ \/
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Lazy Optimization of
Submodular Functions



Greedy Solution

Greedy
Marginal gain: Greedy Algorithm is Slow!
FEUX)-FO) At each iteration, we need to
g | evaluate marginal gains of all
> [l the remaining elements
c Runtime O(|U| * K) for
d selecting K elements out of
¢ the set U

Add element with
highest marginal gain
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Speeding up Greedy

In round i:
So far we have S, = {e, ...e .}

Now we pick an element e ¢S, ; which maximizes
the marginal benefit A, = F(S,_; U {e}) — F(S, ;)
Key observation:

Marginal gain of any element e can never
increase!

For every element e:
A;(e) 2 A(e) for all iterations i < |
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[Leskovec et al., KDD ‘o07]

Lazy Greedy

Idea:
.. Upper bound on
Use A, as upper-bound on Aj U>1)  Marginal gain A,

Lazy Greedy: 2 ] A=@
Keep an ordered list of marginal b

benefits A, from previous iteration

Re-evaluate A, only for top node

Re-sort and prune

F(A widf)—F(A) 2 F(B U{d})—F(B) ace
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[Leskovec et al., KDD ‘o07]

Lazy Greedy

Idea:
.. Upper bound on
Use A, as upper-bound on Aj U>1)  Marginal gainA,

Lazy Greedy: 2 ] A=@
Keep an ordered list of marginal b

benefits A, from previous iteration

Re-evaluate A, only for top node

Re-sort and prune

F(A widf)—F(A) 2 F(B U{d})—F(B) ace
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[Leskovec et al., KDD ‘o07]

Lazy Greedy

Idea:
Use A, as upper-bound on A; (j > i) L,dlzfs,rnt;?;?n?

Lazy Greedy: ] A=
Keep an ordered list of marginal d . A,={a,b}
benefits A, from previous iteration |

Re-evaluate A, only for top node

C

Re-sort and prune

C

F(A widf)—F(A) 2 F(B U{d})—F(B) ace
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[Leskovec et al., KDD ‘o07]

Speed Up of Lazy Greedy Algorithm

Lazy greedy offers significant speed-up over
traditional greedy implementations in

practice.
400

*q—) _’g 300 —
Sl s
Q| g ]
(L) \q—)f (o]0}
— S
Qv E
C;) .gmo
— c

2

v

exhaustive search

(all subsets)

naive

v

1
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2

3 4 5 6

Lazy
?l —
8 9 10

number of elements selected
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