
Remember: No lecture next Tuesday – extra TA office hours for projects instead

¡ More algorithms for streams:
§ (1) Filtering a data stream: Bloom filters

§ Select elements with property x from stream

§ (2) Counting distinct elements: Flajolet-Martin
§ Number of distinct elements in the last k elements

of the stream

§ (3) Estimating moments: AMS method
§ Estimate std. dev. of last k elements

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 2

¡ Each element of data stream is a tuple
¡ Given a list of keys S
¡ Determine which tuples of stream are in S

¡ Obvious solution: Hash table
§ But suppose we do not have enough memory to

store all of S in a hash table
§ E.g., we might be processing millions of filters

on the same stream

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 4

¡ Example: Email spam filtering
§ We know 1 billion “good” email addresses

§ Or, each user has a list of trusted addresses
§ If an email comes from one of these, it is NOT spam

¡ Publish-subscribe systems
§ You are collecting lots of messages (news articles)
§ People express interest in certain sets of keywords
§ Determine whether each message matches user’s interest

¡ Content filtering:
§ You want to make sure the user does not see the same ad

multiple times
¡ Web cache filtering:

§ Has this piece of content been requested before? Then
cache it now.

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 5

Given a set of keys S that we want to filter
¡ Create a bit array B of n bits, initially all 0s
¡ Choose a hash function h with range [0,n)
¡ Hash each member of sÎ S to one of

n buckets, and set that bit to 1, i.e., B[h(s)]=1
¡ Hash each element a of the stream and

output only those that hash to bit that was
set to 1
§ Output a if B[h(a)] == 1

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 6

¡ Creates false positives but no false negatives
§ If the item is in S we surely output it, if not we may

still output it

FilterItem

0010001011000

Output the item since it may be in S.
Item hashes to a bucket that at least
one of the items in S hashed to.

Hash
func h

Drop the item.
It hashes to a bucket set
to 0 so it is surely not in S.

Bit array B

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 7

¡ |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

¡ If the email address is in S, then it surely
hashes to a bucket that has the bit set to 1,
so it always gets through (no false negatives)

¡ Approximately 1/8 of the bits are set to 1, so
about 1/8th of the addresses not in S get
through to the output (false positives)
§ Actually, less than 1/8th, because more than one

address might hash to the same bit
2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 8

¡ More accurate analysis for the number of
false positives

¡ Consider: If we throw m darts into n equally
likely targets, what is the probability that
a target gets at least one dart?

¡ In our case:
§ Targets = bits/buckets
§ Darts = hash values of items

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 9

¡ We have m darts, n targets
¡ What is the probability that a target gets at

least one dart?

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n(/ n)

Equivalent
Equals 1/e
as n ®∞

1 – e–m/n

Approximation is
especially accurate
when n is large

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 10

¡ Fraction of 1s in the array B =
= probability of false positive = 1 – e-m/n

¡ Example: 109 darts, 8·109 targets
§ Fraction of 1s in B = 1 – e-1/8 = 0.1175

§ Compare with our earlier estimate: 1/8 = 0.125

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 11

¡ Consider: |S| = m, |B| = n
¡ Use k independent hash functions h1 ,…, hk
¡ Initialization:
§ Set B to all 0s
§ Hash each element sÎ S using each hash function hi,

set B[hi(s)] = 1 (for each i = 1,.., k)
¡ Run-time:
§ When a stream element with key x arrives

§ If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S
§ That is, x hashes to a bucket set to 1 for every hash function hi(x)

§ Otherwise discard the element x

(note: we have a
single array B!)

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 12

¡ What fraction of the bit vector B are 1s?
§ Throwing k·m darts at n targets
§ So fraction of 1s is (1 – e-km/n)

¡ But we have k independent hash functions
and we only let the element x through if all k
hash element x to a bucket of value 1

¡ So, false positive probability = (1 – e-km/n)k

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 13

¡ m = 1 billion, n = 8 billion
§ k = 1: (1 – e-1/8) = 0.1175
§ k = 2: (1 – e-1/4)2 = 0.0493

¡ What happens as we
keep increasing k?

¡ Optimal value of k: n/m ln(2)
§ In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

§ Error at k = 6: (1 – e-3/4)6 = 0.0216
Optimal k: k which gives the lowest false positive probability

0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of hash functions, k

Fa
ls

e
po

si
tiv

e
pr

ob
.

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 14

¡ Bloom filters allow for filtering / set membership
¡ Bloom filters guarantee no false negatives, and

use limited memory
§ Great for pre-processing before more

expensive checks
¡ Suitable for hardware implementation

§ Hash function computations can be parallelized

¡ Is it better to have 1 big B or k small Bs?
§ It is the same: (1 – e-km/n)k vs. (1 – e-m/(n/k))k

§ But keeping 1 big B is simpler

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 15

¡ Problem:
§ Data stream consists of a universe of elements

chosen from a set of size N
§ Maintain a count of the number of distinct

elements seen so far

¡ Obvious approach:
Maintain the set of elements seen so far
§ That is, keep a hash table of all the distinct

elements seen so far

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 17

¡ How many different words are found among
the Web pages being crawled at a site?
§ Unusually low or high numbers could indicate

artificial pages (spam?)

¡ How many different Web pages does each
customer request in a week?

¡ How many distinct products have we sold in
the last week?

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 18

¡ Real problem: What if we do not have space
to maintain the set of elements seen so far?

¡ Estimate the count in an unbiased way

¡ Accept that the count may have a little error,
but limit the probability that the error is large

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 19

¡ Pick a hash function h that maps each of the
N elements to at least log2 N bits

¡ For each stream element a, let r(a) be the
number of trailing 0s in h(a)
§ r(a) = position of first 1 counting from the right

§ E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
¡ Record R = the maximum r(a) seen
§ R = maxa r(a), over all the items a seen so far

¡ Estimated number of distinct elements = 2R

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 20

¡ Rough intuition why Flajolet-Martin works:
§ h(a) hashes a with equal prob. to any of N values
§ Then h(a) is a sequence of log2 N bits,

where 2-r fraction of all as have a tail of r zeros
§ About 50% of as hash to ***0
§ About 25% of as hash to **00
§ So, if we saw the longest tail of r=2 (i.e., item hash

ending *100) then we have probably seen
about 4 distinct items so far

§ So, it takes to hash about 2r items before we
see one with zero-suffix of length r

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 21

¡ Now we show why Flajolet-Martin works

¡ Formally, we will show that probability of
finding a tail of r zeros:
§ Goes to 1 if 𝒎 ≫ 𝟐𝒓

§ Goes to 0 if 𝒎 ≪ 𝟐𝒓

where 𝒎 is the number of distinct elements
seen so far in the stream

¡ Thus, 2R will almost always be around m!

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 22

¡ What is the probability that a given h(a) ends
in at least r zeros? It is 2-r

§ h(a) hashes elements uniformly at random
§ Probability that a random number ends in

at least r zeros is 2-r

¡ Then, the probability of NOT seeing a tail
of length r among m distinct elements:

𝟏 − 𝟐!𝒓 𝒎

Prob. that given h(a) ends
in fewer than r zerosProb. all m elements

end in fewer than r zeros.

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 23

¡ Note:
¡ Prob. of NOT finding a tail of length r is:
§ If m << 2r, then prob. tends to 1

§ as m/2r® 0
§ So, the probability of finding a tail of length r tends to 0

§ If m >> 2r, then prob. tends to 0
§ as m/2r ®¥
§ So, the probability of finding a tail of length r tends to 1

¡ Thus, 2R will almost always be around m!

1)21(2 =»-
--- rmmr e

0)21(2 =»-
--- rmmr e

rrr mmrmr e
-- --- »-=- 2)2(2)21()21(

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 24

¡ E[2R] is actually infinite
§ Observing R has some probability
§ Probability halves when R ® R+1, but value doubles
§ Each possible large R contributes to exp. value

¡ Workaround involves using many hash functions hi
and getting many samples of Ri

¡ How are samples Ri combined?
§ Average? What if one very large value 𝟐𝑹𝒊?
§ Median? All estimates are a power of 2
§ Solution:

§ Partition your samples into small groups
§ Take the median of groups
§ Then take the average of the medians

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 25

¡ Suppose a stream has elements chosen
from a set A of N values

¡ Let mi be the number of times value i occurs
in the stream

¡ The kth (frequency) moment is

åÎAi
k

im)(
This is the same way as moments are defined in statistics. But
there one typically “centers” the moment by subtracting the mean.

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 27

åÎAi
k

im)(
¡ 0thmoment = number of distinct elements
§ The problem just considered

¡ 1st moment = count of the numbers of
elements = length of the stream
§ Easy to compute, so not particularly useful

¡ 2nd moment = surprise number S =
a measure of how uneven the distribution is
§ Very useful

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 28

¡ Third Moment is Skew:

¡ Fourth moment: Kurtosis
§ peakedness (width of peak), tail weight, and lack

of shoulders (distribution primarily peak and tails,
not in between).

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 29

¡ Measure of how uneven the distribution is

¡ Stream of length 100
¡ 11 distinct values

¡ Item counts mi: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Surprise S = 910

¡ Item counts mi : 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1
Surprise S = 8,110

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 31

¡ AMS method works for all moments
¡ Gives an unbiased estimate
¡ We will just concentrate on the 2nd moment
§ Will generalize later

¡ We pick and keep track of many variables X:
§ For each variable X we store X.el and X.val

§ X.el corresponds to the item i
§ X.val corresponds to the count 𝑚! of item i

§ Note this requires a count in main memory,
so number of Xs is limited

¡ Our goal is to compute 𝑺 = ∑𝒊𝒎𝒊
𝟐

[Alon, Matias, and Szegedy]

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 32

¡ How to set X.val and X.el?
§ Assume stream has length n (we relax this later)
§ Pick some random time t (t<n) to start,

so that any time is equally likely
§ Let at time t the stream have item i. We set X.el = i
§ Then we maintain count c (X.val = c) of the number

of is in the stream starting from the chosen time t
¡ Then the estimate of the 2nd moment (∑𝒊𝒎𝒊

𝟐) is:
𝑺 = 𝒇(𝑿) = 𝒏 (𝟐 · 𝒄 – 𝟏)

§ Note, we will keep track of multiple Xs, (X1, X2,… Xk)
and our final estimate will be 𝑺 = 𝟏/𝒌∑𝒋𝒌𝒇(𝑿𝒋)

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 33

a a a a

1 32 ma

b b b b

Count:

Stream:

1 2 3

¡ 2nd moment is 𝑺 = ∑𝒊𝒎𝒊
𝟐

¡ ct … number of times item at time t appears
from time t onwards (c1=ma , c2=ma-1, c3=mb)

¡ 𝑬 𝒇(𝑿) = 𝟏
𝒏
∑𝒕&𝟏𝒏 𝒏(𝟐𝒄𝒕 − 𝟏)

= 𝟏
𝒏
∑𝒊𝒏 (𝟏 + 𝟑 + 𝟓 +⋯+ 𝟐𝒎𝒊 − 𝟏)

Group times
by the value
seen

Time t when
the last i is
seen (ct=1)

Time t when
the penultimate
i is seen (ct=2)

Time t when
the first i is
seen (ct=mi)

mi … total count of
item i in the stream

(we are assuming
stream has length n)

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 34

a a a a

1 32 ma

b b b bStream:

Count:

¡ 𝐸 𝑓(𝑋) = '
(
∑) 𝑛 (1 + 3 + 5 +⋯+ 2𝑚) − 1)

§ Little side calculation: 1 + 3 + 5 +⋯+ 2𝑚$ − 1 =
∑$%&
'! (2𝑖 − 1) = 2'! '!(&

)
−𝑚$ = (𝑚$))

¡ Then 𝑬 𝒇(𝑿) = 𝟏
𝒏
∑𝒊 𝒏 𝒎𝒊

𝟐

¡ So, 𝐄 𝐟(𝐗) = ∑𝒊 𝒎𝒊
𝟐 = 𝑺

¡ We have the second moment (in expectation)!

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 35

¡ For estimating kth moment we essentially use the
same algorithm but change the estimate f(X):
§ For k=2 we used n (2·c – 1)
§ For k=3 we use: n (3·c2 – 3c + 1) (where c=X.val)

¡ Why?
§ For k=2: Remember we had 1 + 3 + 5 +⋯+ 2𝑚" − 1

and we showed terms 2c-1 (for c=1,…,m) sum to m2

§ ∑"#$% (2𝑐 − 1) = ∑"#$% 𝑐& − ∑"#$% 𝑐 − 1 & =𝑚&

§ So: 𝟐𝒄 − 𝟏 = 𝒄𝟐 − 𝒄 − 𝟏 𝟐

§ For k=3: c3 - (c-1)3 = 3c2 - 3c + 1
¡ Generally: Estimate f(X) = 𝑛 (𝑐- − 𝑐 − 1 -)

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 36

¡ In practice:
§ Compute 𝒇(𝑿) = 𝒏(𝟐 𝒄 – 𝟏) for

as many variables X as you can fit in memory
§ Average them in groups
§ Take median of averages

¡ Problem: Streams never end
§ We assumed there was a number n,

the number of positions in the stream
§ But real streams go on forever, so n is

a variable – the number of inputs seen so far

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 37

¡ (1) The variables X have n as a factor –
keep n separately; just hold the count in X

¡ (2) Suppose we can only store k counts.
We must throw some Xs out as time goes on:
§ Objective: Each starting time t is selected with

probability k/n
§ Solution: (fixed-size / reservoir sampling!)

§ Choose the first k times for k variables
§ When the nth element arrives (n > k), choose it with

probability k/n
§ If you choose it, throw one of the previously stored

variables X out, with equal probability

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 38

¡ Filtering a data stream
§ Select elements with property x from the stream

¡ Counting distinct elements
§ Number of distinct elements in the last k elements

of the stream
¡ Estimating moments
§ Estimate avg./std. dev. of elements in stream

¡ Remember: No lecture next Tuesday –
Project Group meetings instead

2/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 39

