
Announcements:
- Thank you for participating in our mid-quarter evaluation.
- Thank you for participating in our homework feedback polls!

- Tell us which problem you’re commenting on J
- Use toy datasets, small random sample to develop and debug – learning to develop with “big” data is

part of what we want to learn here
- Homework deadline accommodations - ask early and concretely!

- If submission doesn’t work, email instructors all files w pre-deadline timestamp. (no personal email)
- Course project proposals

- Average was ~80%
- Don’t worry about grade but take feedback seriously

- Project Milestone due Thu Sun
- We want to see that you are already working with your dataset, have made a real attempt on your

project (e.g. baseline results), and have a concrete plan for the final steps.
- No late days and no exceptions
- Consider meeting with your assigned TA

- Final project presentations; On zoom, 6min prerecorded video presentation + Q&A

¡ Glad to hear that many of you appreciate lectures, colabs, TAs, even HW J
¡ Can lose many points on coding problems -> will try to give more ways to

check correctness (and the many points are intended to help)
¡ Forcing novelty for group projects is tough -> We don’t – we grade by

completion and quality and use a detailed rubric that does not require
scientific novelty

¡ HW take a long time – it varies a lot across students. Some are happy, for
others it takes a long time. It’s okay not to have perfect HW. Everyone
appreciated different aspects of course. We are continuing optimizations that
focus on your learning (e.g. code skeletons, expected outputs, …)

¡ If you have all the prerequisites for this course AND you need 20h+/week,
please come talk to me. We care about your learning and your sanity.

¡ More ideas and feedback always welcome!
2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 2

¡ We often think of networks being organized
into modules, clusters, communities:

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 3

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 4

Network Adjacency matrix

Nodes

N
od

es

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 5

¡ Find micro-markets by partitioning the
query-to-advertiser graph:

advertiser

qu
er
y

[Andersen, Lang: Communities from seed sets, 2006]
2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 6

¡ Clusters in Movies-to-Actors graph:

[Andersen, Lang: Communities from seed sets, 2006]
2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 7

¡ Discovering social circles, circles of trust:

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]
2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 8

¡ Graph is large
§ Assume the graph fits in main memory

§ For example, to work with a 200M node and 2B edge
graph one needs approx. 16GB RAM

§ But the graph is too big for running anything
more than linear time algorithms

¡ We will cover a PageRank based algorithm
for finding dense clusters
§ The runtime of the algorithm will be proportional

to the cluster size (not the graph size!)

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 9

¡ Discovering clusters based on seed nodes
§ Given: Seed node s
§ Compute (approximate) Personalized PageRank

(PPR) around node s (teleport set={s})
§ Idea is that if s belongs to a nice cluster, the

random walk will get trapped inside the cluster

Seed node
2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 10

Seed node
Node rank in decreasing PPR score

C
lu

st
er

 “
qu

al
ity

”
(lo

w
er

 is
 b

et
te

r)

Good clusters

¡ Algorithm outline:
§ Pick a seed node s of interest
§ Run PPR with teleport set = {s}
§ Sort the nodes by the decreasing PPR score
§ Sweep over the nodes and find good clusters

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 11

¡ Undirected graph 𝑮(𝑽, 𝑬):

¡ Partitioning task:
§ Divide vertices into 2 disjoint groups 𝐴, 𝐵 = 𝑉\𝐴

¡ Question:
§ How can we define a “good” cluster in 𝑮?

1

3
2

5

4 6

A B=V\A

1

3

2

5

4 6

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 12

¡ What makes a good cluster?
§ Maximize the number of within-cluster

connections
§ Minimize the number of between-cluster

connections

1

3

2

5

4 6

A V\A

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 13

¡ Express cluster quality as a function of the
“edge cut” of the cluster

¡ Cut: Set of edges (edge weights) with only
one node in the cluster:

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 14

A
cut(A) = 2

1

3

2

5

4 6

Note: This works for
weighted and unweighted
(set all wij=1) graphs

¡ Partition quality: Cut score
§ Quality of a cluster is the weight of connections

pointing outside the cluster
¡ Degenerate case:

¡ Problem:
§ Only considers external cluster connections
§ Does not consider internal cluster connectivity

“Optimal cut”
Minimum cut

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 15

¡ Criterion: Conductance:
Connectivity of the group to the rest of the
network relative to the density of the group

𝒗𝒐𝒍(𝑨): total weight of the edges with at least
one endpoint in 𝑨: 𝐯𝐨𝐥 𝑨 = ∑𝒊∈𝑨𝒅𝒊
n Vol(A)=2*#edges inside A + #edges pointing out of A

n Why use this criterion?
n Produces more balanced partitions

))(2),(min(
|},;),{(|)(

AvolmAvol
AjAiEjiA

-
ÏÎÎ

=f

m… number
of edges of

the graph
di… degree

of node I
E...edge set
of the graph

[Shi-Malik]

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 16

𝝓 = 𝟐/𝟒 = 𝟎. 𝟓 𝝓 = 𝟔/𝟗𝟐 = 𝟎. 𝟎𝟔𝟓

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 17

¡ Algorithm outline:
§ Pick a seed node s of

interest
§ Run PPR w/ teleport={s}
§ Sort the nodes by the

decreasing PPR score
§ Sweep over the nodes

and find good clusters
Node rank i in decreasing PPR score

C
on

du
ct

an
ce

 𝝓
𝑨
𝒊

Good clusters

¡ Sweep:
§ Sort nodes in decreasing PPR score 𝑟! > 𝑟" > ⋯ > 𝑟#
§ For each 𝒊 compute 𝝓(𝑨𝒊 = 𝒓𝟏, … 𝒓𝒊)
§ Local minima of 𝝓(𝑨𝒊) correspond to good clusters

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 18

Node rank i in decreasing PPR score

C
on

du
ct

an
ce

 𝝓
𝑨
𝒊

Good clusters
¡ The whole Sweep

curve can be
computed in linear
time:
§ For loop over the nodes
§ Keep hash-table of

nodes in a set 𝐴&
§ To compute 𝝓 𝑨𝒊'𝟏 = 𝐶𝑢𝑡(𝐴&'!)/𝑉𝑜𝑙(𝐴&'!)

§ 𝑉𝑜𝑙 𝐴$%& = 𝑉𝑜𝑙 𝐴$ + 𝑑$%&
§ 𝐶𝑢𝑡 𝐴$%& = 𝐶𝑢𝑡 𝐴$ + 𝑑$%& − 2#(𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝑢$%& 𝑡𝑜 𝐴$)

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 19

¡ How to compute Personalized PageRank (PPR)
without touching the whole graph?
§ Power method won’t work since each single iteration

accesses all nodes of the graph:
𝐫(𝐭#𝟏) = 𝛃𝐌 ⋅ 𝐫(𝒕) + 𝟏 − 𝜷 𝒂
§ 𝒂 is a teleport vector: 𝒂 = 𝟎 …𝟎 𝟏 𝟎 …𝟎 𝑻

§ 𝒓 is the personalized PageRank vector

¡ Approximate PageRank [Andersen, Chung, Lang, ‘07]
§ A fast method for computing approximate

Personalized PageRank (PPR) with teleport set ={s}
§ ApproxPageRank(s, β, ε)

§ s … seed node
§ β … teleportation parameter
§ ε … approximation error parameter

At index S

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 20

¡ Overview of the approximate PPR
§ Lazy random walk, which is a variant of a random walk

that stays put with probability 1/2 at each time step, and
walks to a random neighbor the other half of the time:

𝑟'
(#) =

1
2
𝑟'
(+

1
2
.
*→'

1
𝑑*
𝑟*
(

§ Keep track of residual PPR score 𝒒𝒖 = 𝒑𝒖 − 𝒓𝒖
(𝒕)

§ Residual tells us how well PPR score 𝑝$ of 𝒖 is approximated
§ 𝒑𝒖… is the “true” PageRank of node 𝒖
§ 𝒓𝒖

(𝒕)… is PageRank estimate of node 𝑢 at around 𝒕
If residual 𝒒𝒖 of node 𝒖 is too big 𝒒𝒖

𝒅𝒖
≥ 𝜺 then push the walk

further (distribute some of residual 𝑞$ to all 𝑢’s neighbors along
out-coming edges), else don’t touch the node

𝑑"… degree of 𝑖

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 21

¡ A different way to look at PageRank:
[Jeh&Widom. Scaling Personalized Web Search, 2002]

𝒑𝜷(𝒂) = 𝟏 − 𝜷 𝒂 + 𝜷 𝒑𝜷(𝑴 ⋅ 𝒂)
§ 𝒑𝜷(𝒂) is the true PageRank vector with teleport

parameter 𝜷, and teleport vector 𝒂
§ 𝒑𝜷(𝑴 ⋅ 𝒂) is the PageRank vector with teleportation

vector 𝑴 ⋅ 𝒂, and teleportation parameter 𝜷
§ where 𝑴 is the stochastic PageRank transition matrix
§ Notice: 𝑴 ⋅ 𝒂 is one step of a random walk

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 22

¡ Proving: 𝒑𝜷(𝒂) = 𝟏 − 𝜷 𝒂 + 𝜷 𝒑𝜷(𝑴 ⋅ 𝒂)
§ We can break this probability into two cases:

§ Walks of length 0, and
§ Walks of length longer than 0

§ The probability of length 0 walk is 𝟏 − 𝜷, and the walk
ends where it started, with walker distribution 𝒂

§ The probability of walk length >0 is 𝜷, and then the walk
starts at distribution 𝒂, takes a step, (so it has distribution
𝑴𝒂), then takes the rest of the random walk with
distribution 𝒑𝜷(𝑴𝒂)
§ Note that we used the memoryless nature of the walk: After we

know the location of the second step of the walk has distribution
𝑴𝒂, the rest of the walk can forget where it started and behave as
if it started at 𝑴𝒂. This is the key idea of the proof sketch.

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 23

residual PPR score 𝒒𝒖 = 𝒑𝒖 − 𝒓𝒖
¡ Idea:

§ 𝒓… approx. PageRank, 𝒒… its residual PageRank
§ Start with trivial approximation: 𝒓 = 𝟎 and 𝒒 = 𝒂
§ Iteratively push PageRank from 𝒒 to 𝒓 until 𝒒 is small

¡ Push: 1 step of a lazy random walk from node 𝒖:
𝑷𝒖𝒔𝒉(𝒖, 𝒓, 𝒒):
𝒓′ = 𝒓, 𝒒′ = 𝒒
𝒓𝒖0 = 𝒓𝒖 + 𝟏 − 𝜷 𝒒𝒖
𝒒𝒖0 =

𝟏
𝟐
𝜷𝒒𝒖

for each 𝒗 such that 𝒖 → 𝒗:
𝒒𝒗0 = 𝒒𝒗 +

𝟏
𝟐𝜷

𝒒𝒖
𝒅𝒖

return 𝒓0, 𝒒0

Update r
Do 1 step of a walk:
Stay at u with prob. ½
Spread remaining ½
fraction of qu as if a
single step of random
walk were applied to u

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 24

¡ If 𝒒𝒖 is large, this
means that we have
underestimated the
importance of node 𝒖

¡ Then we want to take some
of that residual (𝒒𝒖) and give
it away, since we know that we have too much of it

¡ So, we keep 𝟏
𝟐
𝜷𝒒𝒖 and then give away the rest to our

neighbors, so that we can get rid of it
§ This correspond to the spreading of 𝟏𝟐𝜷 𝒒𝒖/𝒅𝒖 term

¡ Each node wants to keep giving away this excess
PageRank until all nodes have no or a very small gap in
excess PageRank

𝑷𝒖𝒔𝒉(𝒖, 𝒓, 𝒒):
𝒓′ = 𝒓, 𝒒′ = 𝒒
𝒓𝒖" = 𝒓𝒖 + 𝟏 − 𝜷 𝒒𝒖
𝒒𝒖" =

𝟏
𝟐
𝜷𝒒𝒖

for each 𝒗 such that 𝒖 → 𝒗:
𝒒𝒗" = 𝒒𝒗 +

𝟏
𝟐
𝜷 𝒒𝒖
𝒅𝒖

return 𝒓", 𝒒"

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 25

¡ ApproxPageRank(S, β, ε):
Set 𝒓 = 0, 𝒒 = [0 . . 0 1 0…0]
While 𝐦𝐚𝐱

𝒖∈𝑽
𝒒𝒖
𝒅𝒖
≥ 𝜺:

Choose any vertex 𝒖 where 6"
7"
≥ 𝜀

𝑷𝒖𝒔𝒉(𝒖, 𝒓, 𝒒):
𝒓′ = 𝒓, 𝒒′ = 𝒒
𝒓𝒖0 = 𝒓𝒖 + 𝟏 − 𝜷 𝒒𝒖
𝒒𝒖0 =

𝟏
𝟐
𝜷𝒒𝒖

For each 𝒗 such that 𝒖 → 𝒗:
𝒒𝒗0 = 𝒒𝒗 +

𝟏
𝟐
𝜷𝒒𝒖/𝒅𝒖

𝒓 = 𝒓0, 𝒒 = 𝒒0
Return 𝒓

r … PPR vector
ru…PPR score of u
q …residual PPR vector
qu … residual of node u
du … degree of u

Update r: Move (1 − 𝛽)
of the prob. from qu to ru
1 step of a lazy
random walk:
- Stay at qu with prob. ½
- Spread remaining ½ 𝜷
fraction of qu as if a
single step of random
walk were applied to u

At index S

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 26

¡ Runtime:
§ ApproxPageRank (PageRank-Nibble) computes PPR

in time O 𝟏
𝜺 𝟏>𝜷

with residual error ≤ 𝜺

§ Power method would take time 𝑶(𝐥𝐨𝐠 𝒏
𝜺(𝟏A𝜷))

¡ Graph cut approximation guarantee:
§ If there exists a cut of conductance 𝝓 and volume 𝒌

then the method finds a cut of conductance
𝐎(𝝓 𝒍𝒐𝒈𝒌)

§ Details in [Andersen, Chung, Lang. Local graph
partitioning using PageRank vectors, 2007]
http://www.math.ucsd.edu/~fan/wp/localpartfull.pdf

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 28

¡ The smaller the ε the farther the random
walk will spread!

Seed node

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 29

Fu
ll P

PR

Ap
pr

ox
im

at
e

PP
R

[Andersen, Lang: Communities from seed sets, 2006]
2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 30

Seed node
Node rank in decreasing PPR score

C
lu

st
er

 “
qu

al
ity

”
(lo

w
er

 is
 b

et
te

r)

Good clusters

¡ Algorithm summary:
§ Pick a seed node s of interest
§ Run PPR with teleport set = {s}
§ Sort the nodes by the decreasing PPR score
§ Sweep over the nodes and find good clusters

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 32

¡ Communities: sets of
tightly connected nodes

¡ Define: Modularity 𝑸
§ A measure of how well

a network is partitioned
into communities

§ Given a partitioning of the
network into groups 𝒔 ∈ 𝑺:
Q µ ∑sÎ S [(# edges within group s) –

(expected # edges within group s)]
Need a null model!

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 34

¡ Given real 𝑮 on 𝒏 nodes and 𝒎 edges,
construct rewired network 𝑮’
§ Same degree distribution but

random connections
§ Consider 𝑮’ as a multigraph
§ The expected number of edges between nodes
𝒊 and 𝒋 of degrees 𝒌𝒊 and 𝒌𝒋 equals to: 𝒌𝒊 ⋅

𝒌𝒋
𝟐𝒎

=
𝒌𝒊𝒌𝒋
𝟐𝒎

§ The expected number of edges in (multigraph) G’:

§ = 𝟏
𝟐
∑𝒊∈𝑵∑𝒋∈𝑵

𝒌𝒊𝒌𝒋
𝟐𝒎

= 𝟏
𝟐
⋅ 𝟏
𝟐𝒎
∑𝒊∈𝑵𝒌𝒊 ∑𝒋∈𝑵𝒌𝒋 =

§ = 𝟏
𝟒𝒎
𝟐𝒎 ⋅ 𝟐𝒎 = 𝒎 (sanity check)

j

i

+
$∈&

𝑘$ = 2𝑚
Note:

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 35

¡ Modularity of partitioning S of graph G:
§ Q µ ∑sÎ S [(# edges within group s) –

(expected # edges within group s)]

§ 𝑸 𝑮, 𝑺 = 𝟏
𝟐𝒎
∑𝒔∈𝑺∑𝒊∈𝒔∑𝒋∈𝒔 𝑨𝒊𝒋 −

𝒌𝒊𝒌𝒋
𝟐𝒎

¡ Modularity values take range [−1,1]
§ It is positive if the number of edges within

groups exceeds the expected number
§ Q greater than 0.3-0.7 means significant

community structure

Aij = 1 if i®j,
0 elseNormalizing const.: -1<Q<1

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 36

𝑸 𝑮, 𝑺 =
𝟏
𝟐𝒎

+
𝒔∈𝑺

+
𝒊∈𝒔

+
𝒋∈𝒔

𝑨𝒊𝒋 −
𝒌𝒊𝒌𝒋
𝟐𝒎

Equivalently modularity can be written as:

is an indicator function

Idea: We can identify communities by
maximizing modularity

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 37

¡ Greedy algorithm for community detection
§ 𝑂(𝑛 log 𝑛) run time (* observed empirically)

¡ Supports weighted graphs
¡ Provides hierarchical partitions

¡ Widely utilized to study large networks because:
§ Fast
§ Rapid convergence properties
§ High modularity output (i.e., “better communities”)

[Fast unfolding of communities in large networks, Blondel et al. (2008)]
2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 39

¡ Louvain algorithm greedily maximizes modularity
¡ Each pass is made of 2 phases:
§ Phase 1: Modularity is optimized by allowing only

local changes of communities
§ Phase 2: The identified communities are aggregated

in order to build a new network of communities
§ Goto Phase 1

The passes are repeated
iteratively until no increase of

modularity is possible!

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 40

¡ Put each node in a graph into a distinct community
(one node per community)

¡ For each node i, the algorithm performs two
calculations:
§ Compute the modularity gain (∆𝑄) when putting node 𝑖

from its current community into the community of some
neighbor 𝑗 of 𝑖

§ Move 𝑖 to a community that yields the largest modularity
gain ∆𝑄

¡ The loop runs until no movement yields a gain
This first phase stops when a local maximum of the modularity is attained, i.e., when no individual move
can improve the modularity.
One should also note that the output of the algorithm depends on the order in which the nodes are
considered. Research indicates that the ordering of the nodes does not have a significant influence on the
modularity that is obtained.

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 41

What is 𝚫𝑸 if we move node 𝒊 to community 𝑪?

§ where:
§ Σ$B… sum of link weights between nodes in 𝐶
§ ΣCDC… sum of all link weights of nodes in 𝐶

§
E#,#%
F

… sum of link weights between node 𝑖 and 𝐶

§ 𝑘$… sum of all link weights (i.e., degree) of node 𝑖
¡ Also need to derive Δ𝑄 𝐷 → 𝑖 of taking

node 𝑖 out of community 𝐷.
¡ And then: Δ𝑄 = Δ𝑄 𝑖 → 𝐶 + Δ𝑄 𝐷 → 𝑖

Δ𝑄 𝑖 → 𝐶

Σ"#:

Σ$%$:

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 42

¡ The partitions obtained in the first phase are
contracted into super-nodes, and the
weighted network is created as follows
§ Super-nodes are connected if there is at least one

edge between nodes of the corresponding
communities

§ The weight of the edge between the two super-
nodes is the sum of the weights from all edges
between their corresponding partitions

¡ The loop runs until the community
configuration does not change anymore

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 43

2/6/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 44

