Announcements:

- Thank you for participating in our mid-quarter evaluation.
- Thank you for participating in our homework feedback polls!
- Tell us which problem you're commenting on :)
- Use toy datasets, small random sample to develop and debug - learning to develop with "big" data is part of what we want to learn here
- Homework deadline accommodations - ask early and concretely!
- If submission doesn't work, email instructors all files w pre-deadline timestamp. (no personal email)
- Course project proposals
- Average was ~80\%
- Don't worry about grade but take feedback seriously
- Project Milestone due Thu Sun
- We want to see that you are already working with your dataset, have made a real attempt on your project (e.g. baseline results), and have a concrete plan for the final steps.
- No late days and no exceptions
- Consider meeting with your assigned TA
- Final project presentations; On zoom, 6min prerecorded video presentation + Q\&A

Community Detection in

Graphs

CS547 Machine Learning for Big Data Tim Althoff

Midpoint evaluation reflections

Please rate each of these course components based on how helpful they are for your learning

- Glad to hear that many of you appreciate lectures, colabs, TAs, even HW ©
- Can lose many points on coding problems -> will try to give more ways to check correctness (and the many points are intended to help)
- Forcing novelty for group projects is tough -> We don't - we grade by completion and quality and use a detailed rubric that does not require scientific novelty
- HW take a long time - it varies a lot across students. Some are happy, for others it takes a long time. It's okay not to have perfect HW. Everyone appreciated different aspects of course. We are continuing optimizations that focus on your learning (e.g. code skeletons, expected outputs, ...)
- If you have all the prerequisites for this course AND you need 20h+/week, please come talk to me. We care about your learning and your sanity.
- More ideas and feedback always welcome!

Networks \& Communities

- We often think of networks being organized into modules, clusters, communities:

Goal: Find Densely Linked Clusters

2/6/23

Non-overlapping Clusters

Micro-Markets in Sponsored Search

- Find micro-markets by partitioning the query-to-advertiser graph:

[Andersen, Lang: Communities from seed sets, 2006]

Movies and Actors

- Clusters in Movies-to-Actors graph:

Twitter \& Facebook

- Discovering social circles, circles of trust:
friends under the same advisor

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]

The Setting

- Graph is large
- Assume the graph fits in main memory
- For example, to work with a 200M node and 2B edge graph one needs approx. 16GB RAM
- But the graph is too big for running anything more than linear time algorithms
- We will cover a PageRank based algorithm for finding dense clusters
- The runtime of the algorithm will be proportional to the cluster size (not the graph size!)

Idea: Seed Nodes

- Discovering clusters based on seed nodes
- Given: Seed node s
- Compute (approximate) Personalized PageRank (PPR) around node s (teleport set=\{s\})
- Idea is that if \mathbf{s} belongs to a nice cluster, the random walk will get trapped inside the cluster

Seed Node: Intuition

- Algorithm outline:

- Pick a seed node s of interest
- Run PPR with teleport set = \{s\}
- Sort the nodes by the decreasing PPR score
- Sweep over the nodes and find good clusters

What makes a good cluster?

- Undirected graph $\boldsymbol{G}(\boldsymbol{V}, \boldsymbol{E})$:
- Partitioning task:

- Divide vertices into 2 disjoint groups $A, B=V \backslash A$

- Question:
" How can we define a "good" cluster in G ?

What makes a good cluster?

- What makes a good cluster?
- Maximize the number of within-cluster connections
- Minimize the number of between-cluster connections

Graph Cuts

- Express cluster quality as a function of the "edge cut" of the cluster
- Cut: Set of edges (edge weights) with only one node in the cluster:

$$
\operatorname{cut}(A)=\sum_{i \in A, j \notin A} w_{i j}
$$

Note: This works for weighted and unweighted (set all $\mathrm{w}_{\mathrm{ij}}=1$) graphs

$\operatorname{cut}(A)=2$

Cut Score

- Partition quality: Cut score
- Quality of a cluster is the weight of connections pointing outside the cluster
- Degenerate case:

- Problem:
- Only considers external cluster connections
- Does not consider internal cluster connectivity

Graph Partitioning Criteria

- Criterion: Conductance:

Connectivity of the group to the rest of the network relative to the density of the group

$$
\phi(A)=\frac{|\{(i, j) \in E ; i \in A, j \notin A\}|}{\min (\operatorname{vol}(A), 2 m-\operatorname{vol}(A))}
$$

$\operatorname{vol}(\boldsymbol{A})$: total weight of the edges with at least one endpoint in $A: \operatorname{vol}(A)=\sum_{i \in A} \boldsymbol{d}_{\boldsymbol{i}}$

- Vol(A) $=2^{*}$ \#edges inside $\mathrm{A}+$ \#edges pointing out of A
\square Why use this criterion?
- Produces more balanced partitions
m... number of edges of the graph $\mathbf{d}_{\mathbf{i}} \ldots$ degree of node I
E...edge set of the graph

Example: Conductance Score

$$
\phi=2 / 4=0.5
$$

$\phi=6 / 92=0.065$

Algorithm Outline: Sweep

- Algorithm outline:
- Pick a seed node s of interest
- Run PPR w/ teleport=\{s\}
- Sort the nodes by the decreasing PPR score
- Sweep over the nodes and find good clusters

Node rank ii in decreasing PPR score

- Sweep:
- Sort nodes in decreasing PPR score $r_{1}>r_{2}>\cdots>r_{n}$
- For each \boldsymbol{i} compute $\boldsymbol{\phi}\left(\boldsymbol{A}_{\boldsymbol{i}}=\left\{\boldsymbol{r}_{1}, \ldots \boldsymbol{r}_{\boldsymbol{i}}\right\}\right)$
- Local minima of $\boldsymbol{\phi}\left(\boldsymbol{A}_{\boldsymbol{i}}\right)$ correspond to good clusters

Computing the Sweep

- The whole Sweep curve can be computed in linear time:
- For loop over the nodes

- Keep hash-table of

Node rank iin decreasing PPR score nodes in a set A_{i}

- To compute $\boldsymbol{\phi}\left(\boldsymbol{A}_{\boldsymbol{i + 1}}\right)=\operatorname{Cut}\left(A_{i+1}\right) / \operatorname{Vol}\left(A_{i+1}\right)$
$-\operatorname{Vol}\left(A_{i+1}\right)=\operatorname{Vol}\left(A_{i}\right)+d_{i+1}$
$-\operatorname{Cut}\left(A_{i+1}\right)=\operatorname{Cut}\left(A_{i}\right)+d_{i+1}-2 \#\left(\right.$ edges of u_{i+1} to $\left.A_{i}\right)$

Computing PPR

- How to compute Personalized PageRank (PPR) without touching the whole graph?
- Power method won't work since each single iteration accesses all nodes of the graph: $\mathbf{r}^{(\mathbf{t}+\mathbf{1})}=\boldsymbol{\beta} \mathbf{M} \cdot \mathbf{r}^{(\boldsymbol{t})}+(\mathbf{1}-\boldsymbol{\beta}) \boldsymbol{a} \sqrt{\downarrow}$ At index \mathbf{S}
- a is a teleport vector: $a=\left[\begin{array}{llll}0 & \ldots & \mathbf{1} & 0\end{array} . .0\right]^{T}$
- \boldsymbol{r} is the personalized PageRank vector
- Approximate PageRank [Andersen, Chung, Lang, '07]
- A fast method for computing approximate Personalized PageRank (PPR) with teleport set =\{s\}
- ApproxPageRank(s, β, ε)
- s ... seed node
- $\boldsymbol{\beta}$... teleportation parameter
- $\boldsymbol{\varepsilon}$... approximation error parameter

Approximate PPR: Overview

- Overview of the approximate PPR
- Lazy random walk, which is a variant of a random walk that stays put with probability $1 / 2$ at each time step, and walks to a random neighbor the other half of the time:

$$
r_{u}^{(t+1)}=\frac{1}{2} r_{u}^{(t)}+\frac{1}{2} \sum_{i \rightarrow u} \frac{1}{d_{i}} r_{i}^{(t)}
$$

- Keep track of residual PPR score $\boldsymbol{q}_{\boldsymbol{u}}=\boldsymbol{p}_{\boldsymbol{u}}-\boldsymbol{r}_{\boldsymbol{u}}^{(t)}$
- Residual tells us how well PPR score p_{u} of \boldsymbol{u} is approximated
- $p_{u} \ldots$ is the "true" PageRank of node \boldsymbol{u}
- $\boldsymbol{r}_{\boldsymbol{u}}^{(\boldsymbol{t})} \ldots$ is PageRank estimate of node u at around \boldsymbol{t} If residual $\boldsymbol{q}_{\boldsymbol{u}}$ of node \boldsymbol{u} is too big $\frac{q_{u}}{d_{u}} \geq \varepsilon$ then push the walk further (distribute some of residual q_{u} to all u^{\prime} s neighbors along out-coming edges), else don't touch the node

Towards approximate PPR

- A different way to look at PageRank:
[Jeh\&Widom. Scaling Personalized Web Search, 2002]

$$
p_{\beta}(a)=(1-\beta) a+\beta p_{\beta}(M \cdot a)
$$

- $\boldsymbol{p}_{\beta}(\boldsymbol{a})$ is the true PageRank vector with teleport parameter $\boldsymbol{\beta}$, and teleport vector \boldsymbol{a}
- $\boldsymbol{p}_{\boldsymbol{\beta}}(\boldsymbol{M} \cdot \boldsymbol{a})$ is the PageRank vector with teleportation vector $\boldsymbol{M} \cdot \boldsymbol{a}$, and teleportation parameter $\boldsymbol{\beta}$
- where \boldsymbol{M} is the stochastic PageRank transition matrix
- Notice: $\boldsymbol{M} \cdot \boldsymbol{a}$ is one step of a random walk

Towards approximate PPR

- Proving: $p_{\beta}(\boldsymbol{a})=(1-\boldsymbol{\beta}) a+\boldsymbol{\beta} p_{\beta}(\boldsymbol{M} \cdot \boldsymbol{a})$
- We can break this probability into two cases:
- Walks of length 0, and
- Walks of length longer than 0
- The probability of length 0 walk is $\mathbf{1} \boldsymbol{-} \boldsymbol{\beta}$, and the walk ends where it started, with walker distribution \boldsymbol{a}
- The probability of walk length >0 is $\boldsymbol{\beta}$, and then the walk starts at distribution \boldsymbol{a}, takes a step, (so it has distribution $\mathbf{M a}$), then takes the rest of the random walk with distribution $p_{\beta}(M a)$
- Note that we used the memoryless nature of the walk: After we know the location of the second step of the walk has distribution $\mathbf{M a}$, the rest of the walk can forget where it started and behave as if it started at Ma. This is the key idea of the proof sketch.

"Push" Operation

- Idea:
- r... approx. PageRank, \boldsymbol{q}... its residual PageRank
- Start with trivial approximation: $\boldsymbol{r}=\mathbf{0}$ and $\boldsymbol{q}=\boldsymbol{a}$
- Iteratively push PageRank from \boldsymbol{q} to \boldsymbol{r} until \boldsymbol{q} is small
- Push: 1 step of a lazy random walk from node u :

$$
\begin{aligned}
\operatorname{Push} & (\boldsymbol{u}, \boldsymbol{r}, \boldsymbol{q}): \\
\boldsymbol{r}^{\prime} & =\boldsymbol{r}, \boldsymbol{q}^{\prime}=\boldsymbol{q} \\
\boldsymbol{r}_{\boldsymbol{u}}^{\prime} & =\boldsymbol{r}_{\boldsymbol{u}}+(\mathbf{1}-\boldsymbol{\beta}) \boldsymbol{q}_{\boldsymbol{u}} \\
\boldsymbol{q}_{u}^{\prime} & =\frac{1}{2} \boldsymbol{\beta} \boldsymbol{q}_{\boldsymbol{u}}
\end{aligned}
$$

$$
\text { for each } v \text { such that } u \rightarrow v:
$$

$$
\boldsymbol{q}_{v}^{\prime}=\boldsymbol{q}_{v}+\frac{1}{2} \boldsymbol{\beta} \frac{\boldsymbol{q}_{u}}{d_{u}}
$$

return $\boldsymbol{r}^{\prime}, \boldsymbol{q}^{\prime}$

Update r
Do 1 step of a walk:
Stay at u with prob. $1 / 2$
Spread remaining $1 / 2$
fraction of q_{u} as if a
single step of random
walk were applied to ${ }_{\text {paga } 24}$

Intuition Behind Push Operation

- If $\boldsymbol{q}_{\boldsymbol{u}}$ is large, this means that we have underestimated the importance of node \boldsymbol{u}
- Then we want to take some of that residual $\left(\boldsymbol{q}_{u}\right)$ and give it away, since we know that we have too much of it
- So, we keep $\frac{1}{2} \beta q_{u}$ and then give away the rest to our neighbors, so that we can get rid of it
- This correspond to the spreading of $\frac{1}{2} \beta q_{u} / d_{u}$ term
- Each node wants to keep giving away this excess PageRank until all nodes have no or a very small gap in excess PageRank

Approximate PPR

ApproxPageRank(S, β, ε):

Set $\boldsymbol{r}=\overrightarrow{0}, \boldsymbol{q}=\left[\begin{array}{lllll}0 & . & 0 & 1 & 0\end{array} \ldots 0\right]$
While $\max _{u \in V} \frac{q_{u}}{d_{u}} \geq \boldsymbol{\varepsilon}: \quad \downarrow$ At index S
Choose any vertex \boldsymbol{u} where $\frac{q_{u}}{d_{u}} \geq \varepsilon$
Push(u,r,q):

$$
\begin{aligned}
& \boldsymbol{r}^{\prime}=\boldsymbol{r}, \boldsymbol{q}^{\prime}=\boldsymbol{q} \\
& \boldsymbol{r}_{\boldsymbol{u}}^{\prime}=\boldsymbol{r}_{\boldsymbol{u}}+(\mathbf{1}-\beta) \boldsymbol{q}_{\boldsymbol{u}} \\
& \boldsymbol{q}_{\boldsymbol{u}}^{\prime}=\frac{1}{2} \beta \boldsymbol{q}_{\boldsymbol{u}}
\end{aligned}
$$

$$
\text { For each } v \text { such that } u \rightarrow v:
$$

$$
\begin{aligned}
q_{v}^{\prime} & =q_{v}+\frac{1}{2} \beta q_{u} / d_{u} \\
r=r^{\prime}, q & =q^{\prime}
\end{aligned}
$$

Return r
r... PPR vector
$r_{u} \ldots$...PPR score of u
q ...residual PPR vector
$\mathbf{q}_{\mathbf{u}} \ldots$ residual of node u $\mathbf{d}_{\mathbf{u}} \ldots$ degree of \mathbf{u}

Update r: Move $(1-\beta)$ of the prob. from q_{u} to r_{u} 1 step of a lazy random walk:

- Stay at q_{u} with prob. ½
- Spread remaining ½ $\boldsymbol{\beta}$ fraction of q_{u} as if a single step of random walk were applied to u

Observations (1)

- Runtime:
- ApproxPageRank (PageRank-Nibble) computes PPR in time $\mathrm{O}\left(\frac{\mathbf{1}}{\boldsymbol{\varepsilon}(\mathbf{1}-\boldsymbol{\beta})}\right)$ with residual error $\leq \boldsymbol{\varepsilon}$
- Power method would take time $\boldsymbol{O}\left(\frac{\log n}{\varepsilon(1-\boldsymbol{\beta})}\right)$
- Graph cut approximation guarantee:
- If there exists a cut of conductance $\boldsymbol{\phi}$ and volume \boldsymbol{k} then the method finds a cut of conductance $\mathbf{O}(\sqrt{\phi \log \boldsymbol{k}})$
- Details in [Andersen, Chung, Lang. Local graph partitioning using PageRank vectors, 2007]

Observations (2)

- The smaller the ε the farther the random walk will spread!

Observations (3)

Summary of Approx PPR Alg.

- Algorithm summary:

Node rank in decreasing PPR score

- Pick a seed node s of interest
- Run PPR with teleport set = \{s\}
- Sort the nodes by the decreasing PPR score
- Sweep over the nodes and find good clusters

Modularity Maximization

Network Communities

- Communities: sets of tightly connected nodes
- Define: Modularity \boldsymbol{Q}
- A measure of how well a network is partitioned into communities

- Given a partitioning of the network into groups $\boldsymbol{S} \in \boldsymbol{S}$:
$Q \propto \sum_{s \in S}[(\#$ edges within group $s)-$ $\underbrace{(\operatorname{expected} \# \text { edges within group } s)]}$

Need a null model!

Null Model: Configuration Model

- Given real \boldsymbol{G} on \boldsymbol{n} nodes and \boldsymbol{m} edges, construct rewired network \boldsymbol{G}^{\prime}
- Same degree distribution but random connections
- Consider \boldsymbol{G}^{\prime} as a multigraph

- The expected number of edges between nodes \boldsymbol{i} and \boldsymbol{j} of degrees $\boldsymbol{k}_{\boldsymbol{i}}$ and $\boldsymbol{k}_{\boldsymbol{j}}$ equals to: $\boldsymbol{k}_{\boldsymbol{i}} \cdot \frac{\boldsymbol{k}_{\boldsymbol{j}}}{2 \boldsymbol{m}}=\frac{\boldsymbol{k}_{\boldsymbol{i}} \boldsymbol{k}_{\boldsymbol{j}}}{2 \boldsymbol{m}}$
- The expected number of edges in (multigraph) \mathbf{G}^{\prime} :

$$
\begin{aligned}
& =\frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{k_{i} k_{j}}{2 m}=\frac{1}{2} \cdot \frac{1}{2 m} \sum_{i \in N} k_{i}\left(\sum_{j \in N} k_{j}\right)= \\
& =\frac{1}{4 m} 2 m \cdot 2 m=m \quad \text { (sanity check) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Note: } \\
& \sum_{u \in V} k_{u}=2 m
\end{aligned}
$$

Modularity

- Modularity of partitioning S of graph G:
- $\mathbf{Q} \propto \sum_{s \in S}$ [(\# edges within group s) (expected \# edges within group s)]
- $\boldsymbol{Q}(\boldsymbol{G}, \boldsymbol{S})=\underbrace{\frac{1}{2 m}} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right)$

Normalizing const.: - $1<\mathrm{Q}<1$

$$
\begin{aligned}
A_{i j}= & 1 \text { if } i \rightarrow j, \\
& 0 \text { else },
\end{aligned}
$$

- Modularity values take range [-1,1]
- It is positive if the number of edges within groups exceeds the expected number
- Q greater than 0.3-0.7 means significant community structure

Modularity: 2 Defs

$$
Q(G, S)=\frac{1}{2 m} \sum_{s \in S} \sum_{i \in S} \sum_{j \in S}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right)
$$

Equivalently modularity can be written as:

$$
Q=\frac{1}{2 m} \sum_{i j}\left[A_{i j}-\frac{k_{i} k_{j}}{2 m}\right] \delta\left(c_{i}, c_{j}\right)
$$

- $A_{i j}$ represents the edge weight between nodes i and j;
- k_{i} and k_{j} are the sum of the weights of the edges attached to nodes i and j, respectively;
- $2 m$ is the sum of all of the edge weights in the graph;
- c_{i} and c_{j} are the communities of the nodes; and
- δ is an indicator function

Idea: We can identify communities by maximizing modularity

Louvain Method

Louvain Algorithm

- Greedy algorithm for community detection
- $O(n \log n)$ run time (* observed empirically)
- Supports weighted graphs
- Provides hierarchical partitions
- Widely utilized to study large networks because:
- Fast
- Rapid convergence properties
- High modularity output (i.e., "better communities")

Louvain Algorithm: At High Level

- Louvain algorithm greedily maximizes modularity
- Each pass is made of 2 phases:
- Phase 1: Modularity is optimized by allowing only local changes of communities
- Phase 2: The identified communities are aggregated in order to build a new network of communities
- Goto Phase 1

The passes are repeated iteratively until no increase of
modularity is possible!

Louvain: $1^{\text {st }}$ phase (partitioning)

- Put each node in a graph into a distinct community (one node per community)
- For each node i, the algorithm performs two calculations:
- Compute the modularity gain (ΔQ) when putting node i from its current community into the community of some neighbor j of i
- Move i to a community that yields the largest modularity gain ΔQ
- The loop runs until no movement yields a gain

This first phase stops when a local maximum of the modularity is attained, i.e., when no individual move can improve the modularity.
One should also note that the output of the algorithm depends on the order in which the nodes are considered. Research indicates that the ordering of the nodes does not have a significant influence on the modularity that is obtained.

Louvain: Modularity Gain

What is $\boldsymbol{\Delta} \boldsymbol{Q}$ if we move node \boldsymbol{i} to community \boldsymbol{C} ?

$\Delta Q(i \rightarrow C)=\left[\frac{\sum_{i n}+k_{i, i n}}{2 m}-\left(\frac{\sum_{\text {tot }}+k_{i}}{2 m}\right)^{2}\right]-\left[\frac{\sum_{i n}}{2 m}-\left(\frac{\sum_{\text {tot }}}{2 m}\right)^{2}-\left(\frac{k_{i}}{2 m}\right)^{2}\right]$

- where:
- $\Sigma_{\text {in }} \ldots$ sum of link weights between nodes in C
- $\Sigma_{\text {tot }} \ldots$ sum of all link weights of nodes in C
$=\frac{k_{i, i n}}{2} . .$. sum of link weights between node i and C
- $k_{i} \ldots$ sum of all link weights (i.e., degree) of node i
- Also need to derive $\Delta Q(D \rightarrow i)$ of taking node i out of community D.
- And then: $\Delta Q=\Delta Q(i \rightarrow C)+\Delta Q(D \rightarrow i)$

Louvain: $2^{\text {nd }}$ phase (restructuring)

- The partitions obtained in the first phase are contracted into super-nodes, and the weighted network is created as follows
- Super-nodes are connected if there is at least one edge between nodes of the corresponding communities
- The weight of the edge between the two supernodes is the sum of the weights from all edges between their corresponding partitions
- The loop runs until the community configuration does not change anymore

Louvain Algorithm: Example

$1^{\text {ST }}$ PASS

$2^{\text {ND }}$ PASS

STEP II

