Announcements:

Please tag your homework correctly on gradescopes. We will deduct points if not.
Give us feedback © We discuss and try to follow up on all feedback.
- Midterm course feedback

- Make use of our feedback form (see Ed or slides)

Thu Feb 2 — Homework 2, Colab 4 due and releasing Homework 3, Colab 5
Project feedback by end of this week. Make sure to have dataset in hand/disk

and demonstrate preliminary efforts for milestone report.)

Analysis of Large Graphs:
Link Analysis, PageRank
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Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Graph Data: Media Networks

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
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Graph Data: Information Nets

Chemistry

o
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. Specialties
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y Diseases

Humanities

Earth Sciences

Citation networks and Maps of science
[Borner et al., 2012]
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Graph Data: Communication Networks
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Graph Data: Technological Networks
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Seven Brldges of Konigsberg

[Euler, 1735]
Return to the starting point by traveling each
link of the graph once and only once.
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Web as a Graph
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Web as a directed graph:

Nodes: Webpages

Edges: Hyperlinks
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Web as a Graph
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Nodes: Webpages
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Web as a Directed Graph

I'm a student
at Univ. of X

I'm applying to
college

| teach at
Univ. of X

USNews
Featured

Colleges
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Broad Question

%o 5 YAHOO! & 9 &
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How to organize the Web? & .o wicein-@ -

| ](Fewch ) Optons
First try: Human curated Ut -
Web directories SR E

Yahoo, DMOZ, LookSmart e e

Second try: Web Search

TexOndy Yakoo = Cosaidere

Information Retrieval investigates:
Find relevant docs in a small
and trusted set

= Newspaper articles, Patents, etc.

But: Web is huge, full of untrusted documents,
random things, web spam, etc.
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Web Search: 2 Challenges

2 challenges of web search:
(1) Web contains many sources of information
Who to “trust”?

Trick: Trustworthy pages may point to each other!

(2) What is the “best” answer to query
“newspaper”?
No single right answer

Trick: Pages that actually know about newspapers
might all be pointing to many newspapers
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Ranking Nodes on the Graph

All web pages are not equally “important”

thispersondoesnotexist.com vs. www.uw.edu

There is a large diversity
in the web-graph

node connectivity.

Let’s rank the pages by
the link structure!
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Link Analysis Algorithms

We will cover the following Link Analysis
approaches for computing importances
of nodes in a graph:

Page Rank
Topic-Specific (Personalized) Page Rank

Web Spam Detection Algorithms
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PageRank:
The “Flow” Formulation



Links as Votes

Idea: Links as votes
Page is more important if it has more links
" In-coming links? Out-going links?

Think of in-links as votes:

www.uw.edu has millions in-links

thispersondoesnotexist.com has a few hundreds (?) in-links

Are all in-links equal?

Links from important pages count more
Recursive question!

1/30/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547
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Intuition — (1)

1/30/23

Web pages are important if people visit them
a lot.

But we can’t watch everybody using the Web.
A good surrogate for visiting pages is to
assume people follow links randomly.

Leads to random surfer model:

Start at a random page and follow random out-
links repeatedly, from whatever page you are at.

PageRank = limiting probability of being at a page.
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Intuition — (2)

1/30/23

Solve the recursive equation: “importance of a
page = its share of the importance of each of its
predecessor pages”

Equivalent to the random-surfer definition of
PageRank

Technically, importance = the principal
eigenvector of the transition matrix of the Web
A few fix-ups needed
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Example: PageRank Scores

///////



Simple Recursive Formulation

1/3

0/23

Each link’s vote is proportional to the

importance of its source page

If page j with |mportance r; has n out-links,

each link gets ; votes

Page j's own importance is the sum of the
votes on its in-links




PageRank: The “"Flow"” Model

A “vote” from an important
page is worth more

A page is important if it is
pointed to by other important
pages

Define a “rank” r; for page j

_Z_

l—)]

d; ... out-degree of node i
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Solving the Flow Equations o

equations:
v 2Dy T
3 equations, 3 unknowns, L0 Yz 2
2//r, r
no constants : o= +Tm
. . —0 .
= No unique solution 2 r :76!

= All solutions equivalent modulo a scale factor
Additional constraint forces uniqueness:
"y +rgt+r, =1

= Solution:r,, =—, r, = = Tm =3
Gaussian elimination method works for
small examples, but we need a better
method for large web-size graphs

We need a new formulation!
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PageRank: Matrix Formulation

Stochastic adjacency matrix M

Let page i has d; out-links

. 1
fi — j,then M = else M;, =0

L[] [ ] i [ ]
* M is a column stochastic matrix
Columns sumto 1

Rank vector 7: vector with an entry per page
r; is the importance score of page {

The flow equations can be written v, = Z—

M.r z—>]
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Example

v,
= Remember the flow equation: 7; = Z—’
= Flow equation in the matrix form i~/ d,

M-r=r
= Suppose page i links to 3 pages, including j

l
J
I‘,- B
1/3
M r

— r
|
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Example: Flow Equations & M

r, =ry,/2+r,/2
r, =r,/2+r,
r,=1r,/2

r, r, I,
ry 1l %10
r,| 2| 0 | 1

r,l 0 %] 0

r=M-r

r a2 O] 1
,|=|%2 0 1]} r,
. |0 % 0],
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Eigenvector Formulation

The flow equations can be written
r=M:-r

So the rank vector r is an eigenvector of the

stochastic web matrix M

Starting from any vector u, the limit M(M(.. M(M u)))
is the long-term distribution of the surfers.

The math: limiting distribution = principal NOTE: x is an

eigenvector of M = PageRank. eigenvector with

the corresponding

Note: If r satisfies the equation r = Mr, eigenvalue A if:
then ris an eigenvector of M with eigenvalue 1 Ax = Ax

We can now efficiently solve for r!
The method is called Power iteration
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Power Iteration Method

Given a web graph with n nodes, where the

nodes are pages and edges are hyperlinks
Power iteration: a simple iterative scheme
Suppose there are N web pages
Initialize: r® = [1/N,....,1/N]T P D =

J

Iterate: rt*) =M - ¢(t) ey

(4)
i

d.

1

d; .... out-degree of node |

Stop when |ritt—¢lt)| < ¢

1X|1 = 21<ien|Xi| is the L1 norm
Can use any other vector norm, e.g., Euclidean

About 50 iterations is sufficient to estimate the limiting solution.
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PageRank: How to solve?

y a

Power lteration:
y| % Vs

Setrj=1/N al % | 0

o|l—~|o|B

L ", — . g —
ry =r,/2+r,/2

. _ !/
2:r =71 r, =ry/2+r,
Goto 1 r,=r,/2
Example:
'ry\ 1/3
r, | = 1/3
(T 1/3

lteration O, 1, 2, ...
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PageRank: How to solve?

Power lteration: > = =
y| Vs 0

Set T = 1/N al B | o | 1
ry m| 0 | % | 0

L ", — . g —
ry =r,/2+r,/2

. _ !/
2:r =71 r, =ry/2+r,
Goto 1 r,=r,/2
Example:
'ry’ 1/3 1/3 5/12  9/24 2/5
r, | = 1/3 3/6 1/3 11/24 ... 2/5
T, 1/3 1/6 3/12  1/6 1/5

lteration O, 1, 2, ...
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Why Power Iteration works? (@

1/3

0/23

Power iteration:
A method for finding dominant eigenvector (the

vector corresponding to the largest eigenvalue)
G DI VR ()
r@ =M. r = M(Mr(l)) — M2 . (0
r® = M- r® = M(M2r©®) = M3 - r©
Claim:
Sequence M - r(® M2 .0 Mk. O
approaches the dominant eigenvector of M
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Why Power Iteration works? (@

Claim: Sequence M - (0, M?% . (0 Mk . O
approaches the dominant eigenvector of M
Proof:

Assume M has n linearly independent eigenvectors,
X1, X, ..., Xn With corresponding eigenvalues
/11,/12, ...,/ln, where /11 > /12 > e > An

Vectors x4, X5, ..., X, form a basis and thus we can write:
r® = x; +cy x5 + o+ Ccpy Xy
Mr® = M(cy x1 + €3 x5 + -+ ¢y Xp)

= ¢1(Mx1) + co(Mx3) + -+ ¢ (Mxy)

= c1(A1x1) + c2(A2x2) + -+ + cp(Anxy)
Repeated multiplication on both sides produces
M*r©) = ¢; (A x1) + c2(A5x2) + -+ + ¢ (Aixy)
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Why Power Iteration works? (5,@

Claim: Sequence M - r® M2 . (@ mk. O
approaches the dominant eigenvector of M
Proof (continued):

Repeated multiplication on both sides produces
M*r© = ¢ (Afx1) + c2(A5x2) + -+ + e (Aixy)

k

k
MRy () = 2% [clxl + ¢, ('1—2) Xy + -+ cp (A—") xn]
A’l Al

: : A, A
Since A; > A, then fractions=,—= ... < 1
3 k A A

and so (A—l) =0ask — oo (foralli =2..n).

Thus: Mkr(©® ~ c1(A%x,)

* Note if c; = 0 then the method won’t converge
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Random Walk Interpretation

Imagine a random web surfer:

At any time t, surfer is on some page i

At time t + 1, the surfer follows an
out-link from i uniformly at random po= Z

V.

I

. . A~4 ()
Ends up on some page j linked from i i=J “out
Process repeats indefinitely
Let:

p(t) ... vector whose it" coordinate is the
prob. that the surfer is at page i at time t

So, p(t) is a probability distribution over pages
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The Stationary Distribution

Where is the surfer at time #+1?
Follows a link uniformly at random
p(t+1)= M- p(t) p(t+1)=M- p(t)
Suppose the random walk reaches a state
p(t+1)= M- p(t) = p(t)
then p(t) is stationary distribution of a random walk
Our original rank vector r satisfies r = M - r

So, r is a stationary distribution for
the random walk
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Existence and Uniqueness

= A central result from the theory of random
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and

eventually will be reached no matter what is
the initial probability distribution at timet=0
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PageRank:
The Google Formulation



PageRank: Three Questions

(7)
(t+1) V. N
r] o Z d equivalently I/' — Mr

I— ] 1

Does this converge?
Does it converge to what we want?

Are results reasonable?
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Does this converge?

(4)

> (t+1) . ’/;
e( Q rj o Z d

=] 1

Example:
r, _ 1 0 1

r 0 1 0 1

lteration O, 1, 2, ...
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Does it converge to what we want?

(4)

(t+1) v,
00 -5

=] 1

Example:
r, _ 1 0 0 0

I, 0 1 0 O

lteration O, 1, 2, ...
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PageRank: Problems
Dead end
2 problems:
(1) Dead ends: Some pages
have no out-links

Random walk has “nowhere” to go to
M (o ” .
Such pages cause importance to “leak out”  Spider i

(2) Spider traps:
(all out-links are within the group)
Random walk gets “stuck” in a trap
And eventually spider traps absorb all importance

1/30/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 42



Problem: Spider Traps

® a m
Power lteration: ’
Y2 Vs 0
Setr; =1 G N
. 0 V2 1
T = Ziﬁjz . .
l m is a spider trap r, =ry/2 +r,/2

= And iterate

r, =r,/2
r,=r,/2+r,
Example:
1, 113 2/6  3/12 5/24 0
r, [= 13 16 212 324 ... 0
) 113 3/6 712 16/24 1

lteration O, 1, 2, ...

All the PageRank score gets “trapped” in node m.
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The Google solution for spider traps: At each
time step, the random surfer has two options
With prob. g, follow a link at random
With prob. 1-f, jump to some random page

L is typically in the range 0.8 t0 0.9
Surfer will teleport out of spider trap
within a few time steps
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Problem: Dead Ends

Power Iteration: /LA,
y| Vs 0
Setrj=1 vl 0 | 0
r; m| 0 | % | 0
T = Zisjg,
= And iterate hTh2EN
r, =r,/2
r,=1r,/2
Example:
1, 113 2/6  3/12 5/24 0
r, | = /3 1/6 2/12 324 ... 0
T /3  1/6 1/12 2/24 0

lteration O, 1, 2, ...

Here the PageRank score “leaks” out since the matrix is not stochastic.
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Solution: Always Teleport!

1/30/23

Adjust matrix accordingly

—

Teleports: Follow random teleport links with
probability 1.0 from dead-ends

y a m
V2 V2 0
V2 0 0
0 . 0

y a m
V2 V2 ¥
V2 0 ¥
0 V2 ¥

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547
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Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem
and why do teleports solve the problem?
Spider-traps are not a problem, but with traps
PageRank scores are not what we want
Solution: Never get stuck in a spider trap by
teleporting out of it in a finite number of steps
Dead-ends are a problem

The matrix is not column stochastic so our initial
assumptions are not met

Solution: Make matrix column stochastic by always
teleporting when there is nowhere else to go
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Solution: Random Teleports

Google’s solution that does it all:
At each step, random surfer has two options:

With probability g, follow a link at random
With probability 1-8, jump to some random page

PageRank equation [Brin-Page, 98]

d; ... out-degree

_2 rl 1 1 fnode |

1—]

This formulation assumes that M has no dead ends. We can either
preprocess matrix M to remove all dead ends or explicitly follow random
teleport links with probability 1.0 from dead-ends.
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The Google Matrix

PageRank equation [Brin-Page, ’98]

i= Y Bt A-B)y

l—>]
The Google Matrix A: [1/N]sa-..N by N matrix

1 where all entries are 1/N
A=BM+1-p)|+]
N NXN

We have a recursive problem: r =4 -r
And the Power method still works!
Whatis £?

In practice £ =0.8,0.9 (make 5 steps on avg jump)
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Random Teleports (3 = 0.8)

[1/N]nxn

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

15

M
1/21/2 0
1/2 0 0| +0.:2
0 172 1
y |7/15 715 1/15
a [7/15 1/15 1/
m|1/15 7/15 13/15
A
y 1/3 033 024 0.26 7/33
a = 1/3 020 020 0.18 ...  5/33
m 1/3 046 052 0.56 21/33
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How do we actually compute
the PageRank?



Computing PageRank

Key step is matrix-vector multiplication
rnew = A . rold

Easy if we have enough main memory to

hold A, rold pnew

Say N =1 billion pages

We need 4 bytes for A =B-M+(1-B) [1/N]yan
each entry (say) Y 15 0 1/31/3 173
- : A=0.8 % 0 0+0.2[1/31/31/3
2 billion entries for 0 % 1 13173 13
vectors, approx 8GB
Matrix A has N2 entries 715 7/15 1/15
1018 is a large number! = [7/15 1/15 1/15

1/15 7/15 13/15
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Rearranging the Equation

1-p
r =A-r, whereA;; = f Mj; +—=
_ N
rp = 1=1Aji T
_ vN 1-F
ry = l:]_[ﬁM]l LY ] Ty
N 1- <N
= Xi=1 P Mj; -1 N 2i=1"i
1-— .
=YL, B Mj; -7 A Nﬁ since 2,1y = 1
1_
Soweget:r=p M- -r + [—ﬁ
N 1y
Note: Here we assume M [X]x ... a vector of length N with all entries x

has no dead-ends
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Sparse Matrix Formulation

We just rearranged the PageRank equation

e[

= where [(1-B)/N]y is a vector with all N entries (1-B)/N

M is a sparse matrix! (with no dead-ends)

10 links per node, approx 10N entries
So in each iteration, we need to:
Compute reV = S M - ro'd
Add a constant value (1-B)/N to each entry in r"ew

* Note if M contains dead-ends then },; 7“" < 1 and
we also have to renormalize r"eV so that it sums to 1
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PageRank: The Complete Algorithm

Input: Graph G and parameter
Directed graph G (can have spider traps and dead ends)

Parameter
Output: PageRank vector r

Set: r-"ld ==
] N

repeat until convergence: ), ; ‘r

new

new __ old < ¢

]
. i r’new Z ﬁ old
J: i—j
r'i" =0 ifin- degree of jis0

= Now re-insert the leaked PageRank:
Vj: rnew— ’new+— where: S = 3, ; 'Y

« pold — ,.new

If the graph has no dead-ends then the amount of leaked PageRank is 1-B8. But since we have dead-ends

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
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Some Problems with PageRank

Measures generic popularity of a page
Biased against topic-specific authorities

Solution: Topic-Specific PageRank (on Thursday)
Uses a single measure of importance

Other models of importance

Solution: Hubs-and-Authorities
Susceptible to Link spam

Artificial link topographies created in order to
boost page rank

Solution: TrustRank (on Thursday)
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