
Announcements: 
• Submit your project group TODAY if you haven’t (Ed Pinned Post)
• Project Proposal due this Thursday (no late periods)

Submit on Gradescope as a group once
• Upload homework on time (23:59pm)
• We’d love to hear your feedback through our form

• We spend hours every week reviewing feedback and improving this course!
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¡ Customer X
§ Buys Metallica CD
§ Buys Megadeth CD

¡ Customer Y
§ Does search on Metallica
§ Recommender system 

suggests Megadeth from 
data collected about 
customer X
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Items

Search

Products, web sites, 
blogs, news items, …

Recommendations

Examples:
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¡ Shelf space is a scarce commodity for 
traditional retailers 
§ Also: TV networks, movie theaters,…

¡ Web enables near-zero-cost dissemination 
of information about products
§ From scarcity to abundance

¡ More choice necessitates better filters:
§ Recommendation engines
§ Association rules: How Into Thin Air made Touching 

the Void a bestseller: A WIRED article about the story
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Source: Chris Anderson (2004)
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Read A WIRED article about the story of the Association Rules books to learn more!
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¡ Editorial and hand curated
§ List of favorites
§ Lists of “essential” items

¡ Simple aggregates
§ Top 10, Most Popular, Recent Uploads

¡ Tailored to individual users
§ Amazon, Netflix, …

Today’s class

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 9



¡ X = set of Customers
¡ S = set of Items

¡ Utility function u: X × Sà R
§ R = set of ratings
§ R is a totally ordered set
§ e.g., 1-5 stars, real number in [0,1]
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¡ (1) Gathering “known” ratings for matrix
§ How to collect the data in the utility matrix

¡ (2) Extrapolating unknown ratings from the 
known ones
§ Mainly interested in high unknown ratings

§ We are not interested in knowing what you don’t like 
but what you like

¡ (3) Evaluating extrapolation methods
§ How to measure success/performance of

recommendation methods
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¡ Explicit
§ Ask people to rate items
§ Doesn’t work well in practice – people 

don’t like being bothered
§ Crowdsourcing: Pay people to label items

¡ Implicit
§ Learn ratings from user actions

§ E.g., purchase implies high rating
§ E.g., add to playlist, play in full, skip song…

§ What about low ratings?
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¡ Key problem: Utility matrix U is sparse
§ Most people have not rated most items
§ Cold Start Problem: 

§ New items have no ratings
§ New users have no history

¡ Three approaches to recommender systems:
§ 1) Content-based
§ 2) Collaborative
§ 3) Latent factor based

Today!
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¡ Main idea: Recommend items to customer x
similar to previous items rated highly by x

Example:
¡ Movie recommendations
§ Recommend movies with same actor(s), 

director, genre, …
¡ Websites, blogs, news
§ Recommend other sites with “similar” content
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¡ For each item, create an item profile

¡ Profile is a set (vector) of features
§ Movies: author, title, actor, director,…
§ Text: Set of “important” words in document

¡ How to pick important features?
§ Usual heuristic from text mining is TF-IDF

(Term frequency * Inverse Doc Frequency)
§ Term … Feature
§ Document … Item
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fij = frequency of term (feature) i in doc (item) j

ni = number of docs that mention term i
N = total number of docs

TF-IDF score: wij = TFij × IDFi
Doc profile = set of words with highest TF-IDF 

scores, together with their scores

Note: we normalize 
TF to discount for 
“longer” documents

Large when term i
appears often in doc j

Large when term i appears 
in very few documents
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¡ User profile possibilities:
§ Weighted average of rated item profiles
§ Variation: weight by difference from average 

rating for item

¡ Prediction heuristic: Cosine similarity of user 
and item profiles)
§ Given user profile x and item profile i, estimate 
𝑢 𝒙, 𝒊 = cos 𝒙, 𝒊 = 𝒙·𝒊

𝒙 ⋅ 𝒊

¡ How do you quickly find items closest to 𝒙?
§ Job for LSH!
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¡ +: No need for data on other users
§ No cold-start or sparsity problems

¡ +: Able to recommend to users with 
unique tastes

¡ +: Able to recommend new & unpopular items
§ No first-rater problem

¡ +: Able to provide explanations
§ Can provide explanations of recommended items by 

listing content-features that caused an item to be 
recommended
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¡ –: Finding the appropriate features is hard
§ E.g., images, movies, music

¡ –: Recommendations for new users
§ How to build a user profile?

¡ –: Overspecialization
§ Never recommends items outside user’s 

content profile
§ People might have multiple interests
§ ! Unable to exploit quality judgments of other users!
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Harnessing quality judgments of other users



¡ Consider user x

¡ Find set N of other 
users whose ratings 
are “similar” to 
x’s ratings

¡ Estimate x’s ratings 
based on ratings 
of users in N
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¡ Let rx be the vector of user x’s ratings
¡ Jaccard similarity metric
§ Problem: Ignores the value of the rating 

¡ Cosine similarity metric
§ sim(x, y) = cos(rx, ry) = 

%!⋅%"
||%!||⋅||%"||

§ Problem: Treats some missing ratings as “negative”
¡ Better: Pearson correlation coefficient
§ Sxy = items rated by both users x and y

rx = [*, _, _, *, ***]
ry = [*, _, **, **, _]

rx, ry as sets:
rx = {1, 4, 5}
ry = {1, 3, 4}

rx, ry as points:
rx = {1, 0, 0, 1, 3}
ry = {1, 0, 2, 2, 0}

rx, ry … avg.
rating of x, y

𝒔𝒊𝒎 𝒙, 𝒚 =
∑𝒔∈𝑺𝒙𝒚 𝒓𝒙𝒔 − 𝒓𝒙 𝒓𝒚𝒔 − 𝒓𝒚

∑𝒔∈𝑺𝒙𝒚 𝒓𝒙𝒔 − 𝒓𝒙
𝟐 ∑𝒔∈𝑺𝒙𝒚 𝒓𝒚𝒔 − 𝒓𝒚

𝟐
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¡ Intuitively we want: sim(A, B) > sim(A, C)
¡ Jaccard similarity: 1/5 < 2/4
¡ Cosine similarity: 0.380 > 0.322
§ Considers missing ratings as “negative”
§ Solution: subtract the (row) mean

𝒔𝒊𝒎(𝒙, 𝒚) =
∑𝒊 𝒓𝒙𝒊 ⋅ 𝒓𝒚𝒊

∑𝒊 𝒓𝒙𝒊𝟐 ⋅ ∑𝒊 𝒓𝒚𝒊𝟐

Cosine sim:

sim A,B vs. A,C:
0.092 > -0.559
Notice cosine sim. is 
correlation when 
data is centered at 0
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From similarity metric to recommendations:
¡ Let rx be the vector of user x’s ratings
¡ Let N be the set of k users most similar to x

who have rated item i
¡ Prediction for item i of user x:

§ 𝑟'( =
)
*
∑+∈- 𝑟+(

§ Or even better: 𝑟'( =
∑"∈$ /!"⋅%"%
∑"∈$ /!"

¡ Many other tricks possible…

Shorthand:
𝒔𝒙𝒚 = 𝒔𝒊𝒎 𝒙, 𝒚
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¡ So far: User-user collaborative filtering
¡ Another view: Item-item
§ For item i, find other similar items
§ Estimate rating for item i based 

on ratings for similar items
§ Can use same similarity metrics and 

prediction functions as in user-user model

å
å

Î

Î
×

=
);(

);(

xiNj ij

xiNj xjij
xi s

rs
r

sij… similarity of items i and j
rxj…rating of user x on item j
N(i;x)… set items which were rated by x

and similar to i
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Neighbor selection:
Identify movies similar to
movie 1, rated by user 5

Here we use Pearson correlation as similarity:
1) Subtract mean rating mi from each movie i

m1= (1+3+5+5+4)/5 = 3.6
row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute dot products between rows

s1,m
1.00

-0.18

0.41

-0.10

-0.31

0.59
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Compute similarity weights:
s1,3=0.41, s1,6=0.59

s1,m
1.00

-0.18

0.41

-0.10

-0.31

0.59
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Predict by taking weighted average:

r1.5 = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6 𝒓𝒊𝒙 =
∑𝒋∈𝑵(𝒊;𝒙) 𝒔𝒊𝒋 ⋅ 𝒓𝒋𝒙

∑𝒔𝒊𝒋
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¡ Define similarity sij of items i and j
¡ Select k nearest neighbors N(i; x)
§ Items most similar to i, that were rated by x

¡ Estimate rating rxi as the weighted average: 

Before:

å
å

Î

Î=
);(

);(

xiNj ij

xiNj xjij
xi s

rs
r

å
å

Î

Î
-×

+=
);(

);(
)(

xiNj ij

xiNj xjxjij
xixi s

brs
br

baseline estimate for rxi

𝒃𝒙𝒊 = 𝝁 + 𝒃𝒙 + 𝒃𝒊
¡ μ =  overall mean movie rating
¡ bx =  rating deviation of user x

= (avg. rating of user x) – μ
¡ bi =  rating deviation of movie i
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¡ In practice, it has been observed that item-item
often works better than user-user

¡ Why? Items are simpler, users have multiple tastes
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¡ + Works for any kind of item
§ No feature selection needed

¡ - Cold Start:
§ Need enough users in the system to find a match

¡ - Sparsity: 
§ The user/ratings matrix is sparse
§ Hard to find users that have rated the same items

¡ - First rater: 
§ Cannot recommend an item that has not been 

previously rated
§ New items, Esoteric items

¡ - Popularity bias: 
§ Cannot recommend items to someone with 

unique taste 
§ Tends to recommend popular items
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¡ Implement two or more different 
recommenders and combine predictions
§ Perhaps using a linear model

¡ Add content-based methods to 
collaborative filtering
§ Item profiles for new item problem
§ Demographics to deal with new user problem
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- Evaluation
- Error metrics
- Complexity / Speed
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¡ Compare predictions with known ratings
§ Root-mean-square error (RMSE)

§
)
*
∑+, 𝑟+, − 𝑟+,∗

.
where 𝒓𝒙𝒊 is predicted, 𝒓𝒙𝒊∗ is the true rating of x on i

§ N is the number of points we are making comparisons on

§ Rank Correlation: 
§ Spearman’s correlation between system’s and user’s complete rankings

§ Precision at top 10 (or k): 
§ % of those in top 10 (or k)

¡ Another approach: 0/1 model
§ Coverage:

§ Number of items/users for which the system can make predictions 
§ Precision:

§ Accuracy of predictions 
§ Receiver operating characteristic (ROC)

§ Tradeoff curve between false positives and false negatives

Idea: ignore lowly-ranked items

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 41



¡ Narrow focus on accuracy sometimes 
misses the point
§ Prediction Diversity
§ Prediction Context
§ Order of predictions

¡ In practice, we care only to predict high 
ratings:
§ RMSE might penalize a method that does well 

for high ratings and badly for others
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¡ Expensive step is finding k most similar 
customers: O(|X|) 

¡ Too expensive to do at runtime
§ Could pre-compute

¡ Pre-computation takes time O(k ·|X|)
§ X … set of customers

¡ We already know how to do this!
§ Near-neighbor search in high dimensions (LSH)
§ Clustering
§ Dimensionality reduction
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¡ Leverage all the data
§ Don’t try to reduce data size in an 

effort to make fancy algorithms work
§ Simple methods on large data do best

¡ Add more data
§ e.g., add IMDB data on genres

¡ More data beats better algorithms
A blog post about more data is important
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¡ Training data
§ 100 million ratings, 480,000 users, 17,770 movies

§ Lots of ratings – still 99% sparsity!

§ 6 years of data: 2000-2005
¡ Test data (private)

§ Last few ratings of each user (2.8 million)
§ Evaluation criterion: root mean squared error (RMSE) 
§ Netflix Cinematch RMSE (production): 0.9514

¡ Competition
§ 2700+ teams
§ $1 million prize for 10% improvement on Cinematch
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¡ Next topic: Recommendations via 
Latent Factor models

Overview of Coffee Varieties
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The bubbles above represent products sized by sales volume. 
Products close to each other are recommended to each other. 
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[slide from winning Bellkor Team]
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Gender A Gender B



Koren, Bell, Volinksy, IEEE Computer, 2009
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