
Announcements:
• Submit your project group TODAY if you haven’t (Ed Pinned Post)
• Project Proposal due this Thursday (no late periods)

Submit on Gradescope as a group once
• Upload homework on time (23:59pm)
• We’d love to hear your feedback through our form

• We spend hours every week reviewing feedback and improving this course!

High dim.
data

Locality
sensitive
hashing

Clustering

Dimension-
ality

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Sampling
data

streams

Filtering
data

streams

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommen-
der systems

Association
Rules

Duplicate
document
detection

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 3

¡ Customer X
§ Buys Metallica CD
§ Buys Megadeth CD

¡ Customer Y
§ Does search on Metallica
§ Recommender system

suggests Megadeth from
data collected about
customer X

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 4

Items

Search

Products, web sites,
blogs, news items, …

Recommendations

Examples:

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 5

¡ Shelf space is a scarce commodity for
traditional retailers
§ Also: TV networks, movie theaters,…

¡ Web enables near-zero-cost dissemination
of information about products
§ From scarcity to abundance

¡ More choice necessitates better filters:
§ Recommendation engines
§ Association rules: How Into Thin Air made Touching

the Void a bestseller: A WIRED article about the story

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 6

http://www.wired.com/wired/archive/12.10/tail.html

Source: Chris Anderson (2004)

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 7

Read A WIRED article about the story of the Association Rules books to learn more!
1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 8

http://www.wired.com/wired/archive/12.10/tail.html

¡ Editorial and hand curated
§ List of favorites
§ Lists of “essential” items

¡ Simple aggregates
§ Top 10, Most Popular, Recent Uploads

¡ Tailored to individual users
§ Amazon, Netflix, …

Today’s class

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 9

¡ X = set of Customers
¡ S = set of Items

¡ Utility function u: X × Sà R
§ R = set of ratings
§ R is a totally ordered set
§ e.g., 1-5 stars, real number in [0,1]

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 10

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 11

¡ (1) Gathering “known” ratings for matrix
§ How to collect the data in the utility matrix

¡ (2) Extrapolating unknown ratings from the
known ones
§ Mainly interested in high unknown ratings

§ We are not interested in knowing what you don’t like
but what you like

¡ (3) Evaluating extrapolation methods
§ How to measure success/performance of

recommendation methods

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 12

¡ Explicit
§ Ask people to rate items
§ Doesn’t work well in practice – people

don’t like being bothered
§ Crowdsourcing: Pay people to label items

¡ Implicit
§ Learn ratings from user actions

§ E.g., purchase implies high rating
§ E.g., add to playlist, play in full, skip song…

§ What about low ratings?

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 13

¡ Key problem: Utility matrix U is sparse
§ Most people have not rated most items
§ Cold Start Problem:

§ New items have no ratings
§ New users have no history

¡ Three approaches to recommender systems:
§ 1) Content-based
§ 2) Collaborative
§ 3) Latent factor based

Today!

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 14

¡ Main idea: Recommend items to customer x
similar to previous items rated highly by x

Example:
¡ Movie recommendations
§ Recommend movies with same actor(s),

director, genre, …
¡ Websites, blogs, news
§ Recommend other sites with “similar” content

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 16

likes

Item profiles

build

Red
Circles

Triangles

User profile

match

recommend

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 17

¡ For each item, create an item profile

¡ Profile is a set (vector) of features
§ Movies: author, title, actor, director,…
§ Text: Set of “important” words in document

¡ How to pick important features?
§ Usual heuristic from text mining is TF-IDF

(Term frequency * Inverse Doc Frequency)
§ Term … Feature
§ Document … Item

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 18

fij = frequency of term (feature) i in doc (item) j

ni = number of docs that mention term i
N = total number of docs

TF-IDF score: wij = TFij × IDFi
Doc profile = set of words with highest TF-IDF

scores, together with their scores

Note: we normalize
TF to discount for
“longer” documents

Large when term i
appears often in doc j

Large when term i appears
in very few documents

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 19

¡ User profile possibilities:
§ Weighted average of rated item profiles
§ Variation: weight by difference from average

rating for item

¡ Prediction heuristic: Cosine similarity of user
and item profiles)
§ Given user profile x and item profile i, estimate
𝑢 𝒙, 𝒊 = cos 𝒙, 𝒊 = 𝒙·𝒊

𝒙 ⋅ 𝒊

¡ How do you quickly find items closest to 𝒙?
§ Job for LSH!

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 20

¡ +: No need for data on other users
§ No cold-start or sparsity problems

¡ +: Able to recommend to users with
unique tastes

¡ +: Able to recommend new & unpopular items
§ No first-rater problem

¡ +: Able to provide explanations
§ Can provide explanations of recommended items by

listing content-features that caused an item to be
recommended

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 21

¡ –: Finding the appropriate features is hard
§ E.g., images, movies, music

¡ –: Recommendations for new users
§ How to build a user profile?

¡ –: Overspecialization
§ Never recommends items outside user’s

content profile
§ People might have multiple interests
§ ! Unable to exploit quality judgments of other users!

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 22

Harnessing quality judgments of other users

¡ Consider user x

¡ Find set N of other
users whose ratings
are “similar” to
x’s ratings

¡ Estimate x’s ratings
based on ratings
of users in N

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 24

¡ Let rx be the vector of user x’s ratings
¡ Jaccard similarity metric
§ Problem: Ignores the value of the rating

¡ Cosine similarity metric
§ sim(x, y) = cos(rx, ry) =

%!⋅%"
||%!||⋅||%"||

§ Problem: Treats some missing ratings as “negative”
¡ Better: Pearson correlation coefficient
§ Sxy = items rated by both users x and y

rx = [*, _, _, *, ***]
ry = [*, _, **, **, _]

rx, ry as sets:
rx = {1, 4, 5}
ry = {1, 3, 4}

rx, ry as points:
rx = {1, 0, 0, 1, 3}
ry = {1, 0, 2, 2, 0}

rx, ry … avg.
rating of x, y

𝒔𝒊𝒎 𝒙, 𝒚 =
∑𝒔∈𝑺𝒙𝒚 𝒓𝒙𝒔 − 𝒓𝒙 𝒓𝒚𝒔 − 𝒓𝒚

∑𝒔∈𝑺𝒙𝒚 𝒓𝒙𝒔 − 𝒓𝒙
𝟐 ∑𝒔∈𝑺𝒙𝒚 𝒓𝒚𝒔 − 𝒓𝒚

𝟐

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 25

¡ Intuitively we want: sim(A, B) > sim(A, C)
¡ Jaccard similarity: 1/5 < 2/4
¡ Cosine similarity: 0.380 > 0.322
§ Considers missing ratings as “negative”
§ Solution: subtract the (row) mean

𝒔𝒊𝒎(𝒙, 𝒚) =
∑𝒊 𝒓𝒙𝒊 ⋅ 𝒓𝒚𝒊

∑𝒊 𝒓𝒙𝒊𝟐 ⋅ ∑𝒊 𝒓𝒚𝒊𝟐

Cosine sim:

sim A,B vs. A,C:
0.092 > -0.559
Notice cosine sim. is
correlation when
data is centered at 0

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 26

From similarity metric to recommendations:
¡ Let rx be the vector of user x’s ratings
¡ Let N be the set of k users most similar to x

who have rated item i
¡ Prediction for item i of user x:

§ 𝑟'(=
)
*
∑+∈- 𝑟+(

§ Or even better: 𝑟'(=
∑"∈$ /!"⋅%"%
∑"∈$ /!"

¡ Many other tricks possible…

Shorthand:
𝒔𝒙𝒚 = 𝒔𝒊𝒎 𝒙, 𝒚

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 27

¡ So far: User-user collaborative filtering
¡ Another view: Item-item
§ For item i, find other similar items
§ Estimate rating for item i based

on ratings for similar items
§ Can use same similarity metrics and

prediction functions as in user-user model

å
å

Î

Î
×

=
);(

);(

xiNj ij

xiNj xjij
xi s

rs
r

sij… similarity of items i and j
rxj…rating of user x on item j
N(i;x)… set items which were rated by x

and similar to i
1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 28

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 29

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 30

Neighbor selection:
Identify movies similar to
movie 1, rated by user 5

Here we use Pearson correlation as similarity:
1) Subtract mean rating mi from each movie i

m1= (1+3+5+5+4)/5 = 3.6
row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute dot products between rows

s1,m
1.00

-0.18

0.41

-0.10

-0.31

0.59

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 31

Compute similarity weights:
s1,3=0.41, s1,6=0.59

s1,m
1.00

-0.18

0.41

-0.10

-0.31

0.59

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 32

Predict by taking weighted average:

r1.5 = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6 𝒓𝒊𝒙 =
∑𝒋∈𝑵(𝒊;𝒙) 𝒔𝒊𝒋 ⋅ 𝒓𝒋𝒙

∑𝒔𝒊𝒋
1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 33

¡ Define similarity sij of items i and j
¡ Select k nearest neighbors N(i; x)
§ Items most similar to i, that were rated by x

¡ Estimate rating rxi as the weighted average:

Before:

å
å

Î

Î=
);(

);(

xiNj ij

xiNj xjij
xi s

rs
r

å
å

Î

Î
-×

+=
);(

);(
)(

xiNj ij

xiNj xjxjij
xixi s

brs
br

baseline estimate for rxi

𝒃𝒙𝒊 = 𝝁 + 𝒃𝒙 + 𝒃𝒊
¡ μ = overall mean movie rating
¡ bx = rating deviation of user x

= (avg. rating of user x) – μ
¡ bi = rating deviation of movie i

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 34

¡ In practice, it has been observed that item-item
often works better than user-user

¡ Why? Items are simpler, users have multiple tastes
1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 35

¡ + Works for any kind of item
§ No feature selection needed

¡ - Cold Start:
§ Need enough users in the system to find a match

¡ - Sparsity:
§ The user/ratings matrix is sparse
§ Hard to find users that have rated the same items

¡ - First rater:
§ Cannot recommend an item that has not been

previously rated
§ New items, Esoteric items

¡ - Popularity bias:
§ Cannot recommend items to someone with

unique taste
§ Tends to recommend popular items

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 36

¡ Implement two or more different
recommenders and combine predictions
§ Perhaps using a linear model

¡ Add content-based methods to
collaborative filtering
§ Item profiles for new item problem
§ Demographics to deal with new user problem

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 37

- Evaluation
- Error metrics
- Complexity / Speed

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 38

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 39

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 40

¡ Compare predictions with known ratings
§ Root-mean-square error (RMSE)

§
)
*
∑+, 𝑟+, − 𝑟+,∗

.
where 𝒓𝒙𝒊 is predicted, 𝒓𝒙𝒊∗ is the true rating of x on i

§ N is the number of points we are making comparisons on

§ Rank Correlation:
§ Spearman’s correlation between system’s and user’s complete rankings

§ Precision at top 10 (or k):
§ % of those in top 10 (or k)

¡ Another approach: 0/1 model
§ Coverage:

§ Number of items/users for which the system can make predictions
§ Precision:

§ Accuracy of predictions
§ Receiver operating characteristic (ROC)

§ Tradeoff curve between false positives and false negatives

Idea: ignore lowly-ranked items

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 41

¡ Narrow focus on accuracy sometimes
misses the point
§ Prediction Diversity
§ Prediction Context
§ Order of predictions

¡ In practice, we care only to predict high
ratings:
§ RMSE might penalize a method that does well

for high ratings and badly for others

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 42

¡ Expensive step is finding k most similar
customers: O(|X|)

¡ Too expensive to do at runtime
§ Could pre-compute

¡ Pre-computation takes time O(k ·|X|)
§ X … set of customers

¡ We already know how to do this!
§ Near-neighbor search in high dimensions (LSH)
§ Clustering
§ Dimensionality reduction

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 43

¡ Leverage all the data
§ Don’t try to reduce data size in an

effort to make fancy algorithms work
§ Simple methods on large data do best

¡ Add more data
§ e.g., add IMDB data on genres

¡ More data beats better algorithms
A blog post about more data is important

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 44

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

¡ Training data
§ 100 million ratings, 480,000 users, 17,770 movies

§ Lots of ratings – still 99% sparsity!

§ 6 years of data: 2000-2005
¡ Test data (private)

§ Last few ratings of each user (2.8 million)
§ Evaluation criterion: root mean squared error (RMSE)
§ Netflix Cinematch RMSE (production): 0.9514

¡ Competition
§ 2700+ teams
§ $1 million prize for 10% improvement on Cinematch

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 46

¡ Next topic: Recommendations via
Latent Factor models

Overview of Coffee Varieties

FRTE

S6

S5
L5

S3

S2S1

R8

R6

R5

R4
R3R2

L4

C7

S7

F9 F8 F6
F5

F4

F3 F2F1F0

I2
C6I1

C4C3
C2

C1

B2

B1
S4

Complexity of Flavor

Ex
ot

ic
ne

ss
 /

Pr
ic

e

Flavored

Exotic

Popular Roasts
and Blends

a1

The bubbles above represent products sized by sales volume.
Products close to each other are recommended to each other.

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 47

[slide from winning Bellkor Team]

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 48

Gender A Gender B

Koren, Bell, Volinksy, IEEE Computer, 2009
1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Page 49

1/23/23 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 50

https://bit.ly/547feedback

