Dimensionality Reduction: SVD \& CUR

CS547 Machine Learning for Big Data
Tim Althoff

\mathbf{W}
PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE \& ENGINEERING

Reducing Matrix Dimension

- Often, our data can be represented by an m-by-n matrix
- And this matrix can be closely approximated by the product of three matrices that share a small common dimension r

Dimensionality Reduction

- Compress / reduce dimensionality:
- 10^{6} rows; 10^{3} columns; no updates
- Random access to any cell(s); small error: OK

day	Wc	Th	Fr	Sa	Su	New
customer	$7 / 10 / 96$	$7 / 11 / 96$	$7 / 12 / 96$	$7 / 13 / 96$	$7 / 14 / 96$	

Note: The above matrix is really " 2 -dimensional." All rows can be reconstructed by scaling [1 11000 or or 000011 1]

Dimensionality Reduction

There are hidden, or latent factors, latent dimensions that - to a close approximation explain why the values are as they appear in the data matrix

Dimensionality Reduction

The axes of these dimensions can be chosen by:

- The first dimension is the direction in which the points exhibit the greatest variance
- The second dimension is the direction, orthogonal to the first, in which points show the $2^{\text {nd }}$ greatest variance
- And so on..., until you have enough dimensions that remaining variance is very low

Rank is "Dimensionality"

- Q: What is rank of a matrix A?
- A: Number of linearly independent rows of A
- Cloud of points 3D space:
- Think of point positions
as a matrix: $\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0\end{array}\right] \begin{aligned} & \mathbf{A} \\ & \mathbf{B} \\ & \mathbf{C}\end{aligned}$

- We can rewrite coordinates more efficiently!

- New basis vectors: [1 2 1] [-2 -3 1]
- Then A has new coordinates: [1 0], B: [0 1], C: [1-1]
- Notice: We reduced the number of dimensions/coordinates!

Dimensionality Reduction

- Goal of dimensionality reduction is to discover the axes of data!

Rather than representing every point with 2 coordinates we represent each point with 1 coordinate (corresponding to the position of the point on the red line).

By doing this we incur a bit of error as the points do not exactly lie on the line

SVD: Singular Value
Decomposition

Reducing Matrix Dimension

- Gives a decomposition of any matrix into a product of three matrices:

- There are strong constraints on the form of each of these matrices
- Results in a unique* decomposition
- From this decomposition, you can choose any number r of intermediate concepts (latent factors) in a way that minimizes the reconstruction error

SVD - Definition

$\mathbf{A} \approx \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sum_{i} \sigma_{i} \mathbf{u}_{i} \circ \mathbf{v}_{i}^{\top}$

- A: Input data matrix
" $m \times n$ matrix (e.g., m documents, n terms)
- U: Left singular vectors
- $m \times r$ matrix (m documents, r concepts)
- Σ : Singular values
- rxr diagonal matrix (strength of each 'concept')
(r : rank of the matrix A)
- V: Right singular vectors
- $n \times r$ matrix (n terms, r concepts)

If we set $\sigma_{2}=0$, then the green columns may as well not exist.

$\sigma_{i} \ldots$ scalar

$\mathbf{u}_{\mathbf{i}} \ldots$ vector
$\mathrm{V}_{\mathrm{i}} \ldots$ vector

SVD - Properties

It is always possible to decompose a real matrix \boldsymbol{A} into $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{\top}}$, where

- $\mathbf{U}, \boldsymbol{\Sigma}, \boldsymbol{V}$: unique*
- $\boldsymbol{U}, \boldsymbol{V}$: column orthonormal
- $\boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{U}=\boldsymbol{I} ; \boldsymbol{V}^{\boldsymbol{\top}} \boldsymbol{V}=\boldsymbol{I}$ (I: identity matrix)
- (Columns are orthogonal unit vectors)
- Σ : diagonal
- Entries (singular values) are positive, and sorted in decreasing order ($\boldsymbol{\sigma}_{\mathbf{1}} \geq \boldsymbol{\sigma}_{\mathbf{2}} \geq \ldots \geq \mathbf{0}$)
* Up to permutations for redundant singular values and orientation of singular vectors (URL for details)

SVD - Example: Users-to-Movies

- Consider a matrix. What does SVD do?

SVD - Example: Users-to-Movies

- $\mathbf{A}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ - example: Users to Movies

SVD - Example: Users-to-Movies

- $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ - example: Users to Movies

SVD - Example: Users-to-Movies

SVD - Example: Users-to-Movies

- $A=U \Sigma V^{\top}$ - example:

SVD - Example: Users-to-Movies

- $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\boldsymbol{\top}}$ - example:
 ${ }_{\text {SciFi }}^{\uparrow}$ SciFi
\downarrow
\uparrow
Romance \downarrow

V is "movie-to-concept" factor matrix

SVD - Interpretation \#1

Movies, users and concepts:

- U: user-to-concept matrix
- V: movie-to-concept matrix
- Σ : its diagonal elements:
'strength' of each concept

Dimensionality Reduction with SVD

SVD - Dimensionality Reduction

- Instead of using two coordinates $(\boldsymbol{x}, \boldsymbol{y})$ to describe point locations, let's use only one coordinate
- Point's position is its location along vector $\boldsymbol{v}_{\mathbf{1}}$

SVD - Dimensionality Reduction

- $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ - example:
- V: "movie-to-concept" matrix
- U: "user-to-concept" matrix
$\left[\begin{array}{lllll}\mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2}\end{array}\right]=\left[\begin{array}{ccc}\mathbf{0} .13 & 0.02 & -0.01 \\ \mathbf{0 . 4 1} & 0.07 & -0.03 \\ \mathbf{0 . 5 5} & 0.09 & -0.04 \\ \mathbf{0 . 6 8} & 0.11 & -0.05 \\ 0.15 & \mathbf{- 0 . 5 9} & \mathbf{0 . 6 5} \\ 0.07 & \mathbf{- 0 . 7 3} & \mathbf{- 0 . 6 7} \\ \mathbf{0 . 0 7} & \mathbf{- 0 . 2 9} & \mathbf{0 . 3 2}\end{array}\right]$

SVD - Dimensionality Reduction

- $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ - example:
variance ('spread') on the v_{1} axis
$\left[\begin{array}{lllll}\mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2}\end{array}\right]=\left[\begin{array}{rrr}\mathbf{0} .13 & 0.02 & -0.01 \\ \mathbf{0 . 4 1} & 0.07 & -0.03 \\ \mathbf{0 . 5 5} & 0.09 & -0.04 \\ \mathbf{0 . 6 8} & 0.11 & -0.05 \\ 0.15 & \mathbf{- 0 . 5 9} & \mathbf{0 . 6 5} \\ 0.07 & \mathbf{- 0 . 7 3} & \mathbf{- 0 . 6 7} \\ 0.07 & \mathbf{- 0 . 2 9} & \mathbf{0 . 3 2}\end{array}\right] \mathbf{X}$

$\left[\begin{array}{ccccc}\mathbf{0 . 5 6} & \mathbf{0 . 5 9} & \mathbf{0 . 5 6} & 0.09 & 0.09 \\ 0.12 & -0.02 & 0.12 & \mathbf{- 0 . 6 9} & \mathbf{- 0 . 6 9} \\ 0.40 & \mathbf{- 0 . 8 0} & 0.40 & 0.09 & 0.09\end{array}\right]$

SVD - Dimensionality Reduction

$\mathrm{A}=\mathbf{U} \mathrm{\Sigma}^{\boldsymbol{\top}}$ - example:

- U Σ : Gives the coordinates of the points in the projection axis

$\left[\begin{array}{lllll}\mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2}\end{array}\right]$

Projection of users
Movie 1 rating on the "Sci-Fi" axis U E :
$\left[\begin{array}{ccc}1.61 & 0.19 & -0.01 \\ 5.08 & 0.66 & -0.03 \\ 6.82 & 0.85 & -0.05 \\ 8.43 & 1.04 & -0.06 \\ 1.86 & -5.60 & 0.84 \\ 0.86 & -6.93 & -0.87 \\ 0.86 & -2.75 & 0.41\end{array}\right]$

SVD - Interpretation \#2

More details

- Q: How is dim. reduction done?

SVD - Interpretation \#2

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

SVD - Interpretation \#2

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

SVD - Interpretation \#2

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$
\left[\begin{array}{lllll}
\mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\
\mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\
\mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\
\mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\
0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\
0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\
0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2}
\end{array}\right] \approx\left[\begin{array}{ccc}
\mathbf{0} .13 & 0.02 & -0.01 \\
\mathbf{0 . 4 1} & 0.07 & -0 \\
\mathbf{0 . 5 5} & 0.09 & -0.04 \\
\mathbf{0 . 6 8} & 0.11 & -0.05 \\
0.15 & \mathbf{- 0 . 5 9} & \mathbf{0} 0.05 \\
0.07 & \mathbf{- 0 . 7 3} & \mathbf{- 0} . \mathbf{6 0} \\
0.07 & \mathbf{- 0 . 2 9} & \mathbf{0 . 3 2}
\end{array}\right] \mathbf{x}
$$

$\left[\begin{array}{ccccc}\mathbf{0 . 5 6} & \mathbf{0 . 5 9} & \mathbf{0 . 5 6} & 0.09 & 0.09 \\ 0.12 & -0.02 & 0.12 & \mathbf{- 0 . 6 9} & \mathbf{- 0 . 6 9} \\ 0.40 & -0.80 & 0.40 & 0.09 & 0.09\end{array}\right]$

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$1 \begin{array}{llll}1 & 1 & 0 & 0 \\ \\ \\ \end{array}$	0.130 .02
33000	0.410 .07
4400	0.550 .09
$555000 \sim$	0.680 .11
2044	0.15-0.59
0055	0.07 -0.73
$\left.\begin{array}{lllll}1 & 0 & 2 & 2\end{array}\right]$	0.07-0.29

SVD - Interpretation \#2

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero
$\left[\begin{array}{lllll}\mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2}\end{array}\right]$
$\left[\begin{array}{ccccc}\mathbf{0} .92 & \mathbf{0 . 9 5} & \mathbf{0 . 9 2} & 0.01 & 0.01 \\ \mathbf{2 . 9 1} & \mathbf{3 . 0 1} & \mathbf{2 . 9 1} & -0.01 & -0.01 \\ \mathbf{3 . 9 0} & \mathbf{4 . 0 4} & \mathbf{3 . 9 0} & 0.01 & 0.01 \\ \mathbf{4 . 8 2} & \mathbf{5 . 0 0} & \mathbf{4 . 8 2} & 0.03 & 0.03 \\ 0.70 & \mathbf{0 . 5 3} & 0.70 & \mathbf{4 . 1 1} & \mathbf{4 . 1 1} \\ -0.69 & 1.34 & -0.69 & \mathbf{4 . 7 8} & \mathbf{4 . 7 8} \\ 0.32 & \mathbf{0 . 2 3} & 0.32 & \mathbf{2 . 0 1} & \mathbf{2 . 0 1}\end{array}\right]$

Reconstructed data matrix B

Reconstruction Error is quantified by the Frobenius norm:

$$
\|M\|_{\mathrm{F}}=\sqrt{\Sigma_{\mathrm{ij}} \mathrm{M}_{\mathrm{ij}}{ }^{2}}
$$

$$
\|A-B\|_{\mathrm{F}}=\sqrt{\Sigma_{\mathrm{ij}}\left(\mathrm{~A}_{\mathrm{ij}}-B_{\mathrm{ij}}\right)^{2}}
$$

SVD - Best Low Rank Approx.

- Fact: SVD gives 'best' axis to project on:
- 'best' = minimizing the sum of reconstruction errors

B is best approximation of A :

SVD - Conclusions so far

- SVD: $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\boldsymbol{\top}}$: unique*
- U: user-to-concept factors
- V: movie-to-concept factors
- Σ : strength of each concept
- Q: So what's a good value for r?
- Let the energy of a set of singular values be the sum of their squares.
- Pick r so the retained singular values have at least 90% of the total energy.
- Back to our example:
- With singular values $12.4,9.5$, and 1.3 , total energy $=245.7$
- If we drop 1.3, whose square is only 1.7, we are left with energy 244 , or over 99% of the total

How to Compute SVD

Finding Eigenpairs

- How do we actually compute SVD?
- First we need a method for finding the principal eigenvalue (the largest one) and the corresponding eigenvector of a symmetric matrix
- M is symmetric if $m_{i j}=m_{j i}$ for all i and j
- Method:
- Start with any "guess eigenvector" \boldsymbol{x}_{0}
- Construct $x_{k+1}=\frac{M x_{k}}{\left\|M x_{k}\right\|}$ for $k=0,1, \ldots$
- || ... || denotes the Frobenius norm
- Stop when consecutive \boldsymbol{x}_{k} show little change

Example: Iterative Eigenvector

$$
\left.\begin{array}{l}
\mathrm{M}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right] \quad \mathbf{x}_{0}=1 \\
1
\end{array}\right] \begin{aligned}
& \frac{\mathrm{M} \mathbf{x}_{0}}{\left\|\mathrm{M} \mathbf{x}_{0}\right\|}=\left[\begin{array}{l}
3 \\
5
\end{array}\right] / \sqrt{34}=\left[\begin{array}{l}
0.51 \\
0.86
\end{array}\right]=\mathbf{x}_{1} \\
& \frac{\mathrm{M} \mathbf{x}_{1}}{\left\|\mathrm{M} \mathbf{x}_{1}\right\|}=\left[\begin{array}{l}
2.23 \\
3.60
\end{array}\right] / \sqrt{17.93}=\left[\begin{array}{l}
0.53 \\
0.85
\end{array}\right]=\mathbf{x}_{2}
\end{aligned}
$$

Finding the Principal Eigenvalue

- Once you have the principal eigenvector \boldsymbol{x}, you find its eigenvalue λ by $\lambda=\boldsymbol{x}^{T} M \boldsymbol{x}$.
- In proof: We know $\boldsymbol{x} \lambda=M \boldsymbol{x}$ if λ is the eigenvalue; multiply both sides by \boldsymbol{x}^{T} on the left.
- Since $\boldsymbol{x}^{T} \boldsymbol{x}=1$ we have $\lambda=\boldsymbol{x}^{T} M \boldsymbol{x}$
- Example: If we take $\mathbf{x}^{\top}=[0.53,0.85]$, then

$$
\lambda=[0.530 .85]\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
0.53 \\
0.85
\end{array}\right]=4.25
$$

Finding More Eigenpairs

- Eliminate the portion of the matrix M that can be generated by the first eigenpair, λ and \boldsymbol{x} :

$$
M^{*}:=M-\lambda x x^{T}
$$

- Recursively find the principal eigenpair for M^{*}, eliminate the effect of that pair, and so on
- Example:

$$
M^{*}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]-4.25\left[\begin{array}{l}
0.53 \\
0.85
\end{array}\right][0.530 .85]=\left[\begin{array}{cc}
-0.19 & 0.09 \\
0.09 & 0.07
\end{array}\right]
$$

How to Compute the SVD

- Start by supposing $\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{T}$
- $A^{T}=\left(U \Sigma V^{T}\right)^{T}=\left(V^{T}\right)^{T} \Sigma^{T} U^{T}=V \Sigma U^{T}$
- Why? (1) Rule for transpose of a product; (2) the transpose of the transpose and the transpose of a diagonal matrix are both the identity functions
- $\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{V} \Sigma \boldsymbol{U}^{T} \boldsymbol{U} \Sigma \boldsymbol{V}^{T}=\boldsymbol{V} \Sigma^{2} \boldsymbol{V}^{\boldsymbol{T}}$
- Why? U is orthonormal, so $U^{T} U$ is an identity matrix
- Also note that Σ^{2} is a diagonal matrix whose i-th element is the square of the i-th element of Σ
- $\boldsymbol{A}^{T} A V=V \Sigma^{2} V^{T} V=V \Sigma^{2}$
" Why? V is also orthonormal

Computing the SVD -(2)

- Starting with $\left(A^{T} A\right) V=V \Sigma^{2}$
- Note that therefore the i-th column of V is an eigenvector of $A^{T} A$, and its eigenvalue is the i-th element of Σ^{2}
- Thus, we can find V and Σ by finding the eigenpairs for $A^{T} A$
- Once we have the eigenvalues in Σ^{2}, we can find the singular values by taking the square root of these eigenvalues
- Symmetric argument, $A A^{T}$ gives us U

SVD - Complexity

- To compute the full SVD using specialized methods:
- $\mathbf{O}\left(\mathbf{n m}^{\mathbf{2}}\right)$ or $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}} \mathbf{m}\right)$ (whichever is less)
- But:
- Less work, if we just want singular values
- or if we want the first k singular vectors
- or if the matrix is sparse
- Implemented in linear algebra packages like
- LINPACK, Matlab, SPlus, Mathematica ...

Example of SVD

Case study: How to query?

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' - how?

Case study: How to query?

- Q: Find users that like 'Matrix’
- A: Map query into a 'concept space' - how?

Project into concept space:
Inner product with each
'concept' vector $\mathbf{v}_{\mathbf{i}}$

Matrix

Case study: How to query?

- Q: Find users that like 'Matrix’
- A: Map query into a 'concept space' - how?

Project into concept space:
Inner product with each
'concept' vector $\mathbf{v}_{\mathbf{i}}$

Case study: How to query?

Compactly, we have:
 $\mathbf{q}_{\text {concept }}=\mathbf{q} \mathbf{V}$

E.g.:

Case study: How to query?

- How would the user d that rated ('Alien’, ‘Serenity’) be handled? $\mathrm{d}_{\text {concept }}=\mathrm{d} \mathbf{V}$
E.g.:

Case study: How to query?

- Observation: User d that rated ('Alien', 'Serenity') will be similar to user q that rated ('Matrix'), although \boldsymbol{d} and \mathbf{q} have zero ratings in common!

SVD: Drawbacks

+ Optimal low-rank approximation in terms of Frobenius norm
- Interpretability problem:
- A singular vector specifies a linear combination of all input columns or rows
- Lack of sparsity:
- Singular vectors are dense!

CUR Decomposition

Sparsity

- It is common for the matrix A that we wish to decompose to be very sparse
- But U and V from a SVD decomposition will not be sparse
- CUR decomposition solves this problem by using only (randomly chosen) rows and columns of A

CUR Decomposition

$$
\|\mathrm{X}\|_{\mathrm{F}}=\sqrt{\Sigma_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}}}{ }^{2}
$$

- Goal: Express A as a product of matrices C, U, R Make $\|\boldsymbol{A}-\boldsymbol{C} \cdot \boldsymbol{U} \cdot \boldsymbol{R}\|_{\boldsymbol{F}}$ small
- "Constraints" on C and R :

CUR Decomposition

- Goal: Express A as a product of matrices $C, \boldsymbol{U}, \boldsymbol{R}$ Make $\|\boldsymbol{A}-\boldsymbol{C} \cdot \boldsymbol{U} \cdot \boldsymbol{R}\|_{F}$ small
- "Constraints" on C and R :

$\| \mid$ A

 .
 R

CUR Decomposition

$$
\|\mathrm{X}\|_{\mathrm{F}}=\sqrt{\Sigma_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}}}{ }^{2}
$$

- Goal: Express A as a product of matrices $C, \boldsymbol{U}, \boldsymbol{R}$ Make $\|\boldsymbol{A}-\boldsymbol{C} \cdot \boldsymbol{U} \cdot \boldsymbol{R}\|_{F}$ small
- "Constraints" on C and R :

Computing U

- Let W be the "intersection" of sampled columns \boldsymbol{C} and rows \boldsymbol{R}
- Def: \mathbf{W}^{+}is the pseudoinverse
- Let SVD of $\boldsymbol{W}=\boldsymbol{X} \boldsymbol{Z} \boldsymbol{Y}^{T}$
- Then: $W^{+}=\boldsymbol{Y} Z^{+} \boldsymbol{X}^{T}$
- Z^{+}: reciprocals of non-zero singular values: $\mathrm{Z}^{+}{ }_{\mathrm{ii}}=1 / \mathrm{Z}_{\mathrm{ii}}$

Why the intersection? These are high magnitude numbers
Why pseudoinverse works?
$W=X Z Y^{T}$ then $W^{-1}=\left(Y^{T}\right)^{-1} Z^{-1} X^{-1}$
Due to orthonormality: $X^{-1}=X^{T}, \quad Y^{-1}=Y^{T}$
Since Z is diagonal $Z^{-1}=1 / Z_{i i}$
Thus, if \mathbf{W} is nonsingular, pseudoinverse is the true inverse

Which Rows and Columns?

- To decrease the expected error between A and its decomposition, we must pick rows and columns in a non-uniform manner
- The importance of a row or column of A is the square of its Frobenius norm
- That is, the sum of the squares of its elements.
- When picking rows and columns, the probabilities must be proportional to importance
- Example: [3,4,5] has importance 50, and [3,0,1] has importance 10 , so pick the first 5 times as often as the second

CUR: Row Sampling Algorithm

- Sampling columns (similarly for rows):

Input: matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, sample size c
Output: $\mathbf{C}_{d} \in \mathbb{R}^{m \times c}$

1. for $x=1: n \quad$ [column distribution]
2. $\quad P(x)=\sum_{i} \mathbf{A}(i, x)^{2} / \sum_{i, j} \mathbf{A}(i, j)^{2}$
3. for $i=1: c \quad$ [sample columns]
4. \quad Pick $j \in 1: n$ based on distribution $P(x)$
5. Compute $\mathbf{C}_{d}(:, i)=\mathbf{A}(:, j) / \sqrt{c P(j)}$

Note this is a randomized algorithm, same column can be sampled more than once

Intuition

- Rough and imprecise intuition behind CUR
- CUR is more likely to pick points away from the origin
- Assuming smooth data with no outliers these are the directions of maximum variation
- Example: Assume we have 2 clouds at an angle
- SVD dimensions are orthogonal and thus will be in the middle of the two clouds
- CUR will find the two clouds (but will be redundant)

CUR: Provably good approx. to SVD

- For example:
- Select $c=O\left(\frac{k \log k}{\varepsilon^{2}}\right)$ columns of A using ColumnSelect algorithm (slide 56)
- Select $r=O\left(\frac{k \log k}{\varepsilon^{2}}\right)$ rows of A using

RowSelect algorithm (slide 56)

- Set $\boldsymbol{U}=\boldsymbol{W}^{+}$

Then: $||A-C U R||_{F} \leq(2+\varepsilon)| | A-A_{K}| |_{F}$
with probability 98\%
In practice:
Pick 4k cols/rows
for a "rank-k" approximation

CUR: Pros \& Cons

+ Easy interpretation
- Since the basis vectors are actual columns and rows
+ Sparse basis
- Since the basis vectors are actual
 columns and rows
- Duplicate columns and rows
- Columns of large norms will be sampled many times

SVD vs. CUR

sparse and small
 SVD: $A=U^{2} V^{\top}$ Huge but sparse Big and dense

$$
\text { CUR: } \underset{\text { Huge but sparse }}{\text { dense put small }}
$$

SVD vs. CUR: Simple Experiment

- DBLP bibliographic data
- Author-to-conference big sparse matrix
- $A_{i j}$: Number of papers published by author i at conference j
- 428K authors (rows), 3659 conferences (columns)
- Very sparse
- Want to reduce dimensionality
- How much time does it take?
- What is the reconstruction error?
- How much space do we need?

Results: DBLP- big sparse matrix

- Accuracy:
- 1 - relative sum squared errors
- Space ratio:
- \#output matrix entries / \#input matrix entries
- CPU time

Sun, Faloutsos: Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM '07.

Please give us feedback © https://bit.ly/547feedback

