Dimensionality Reduction: SVD & CUR

CS547 Machine Learning for Big Data Tim Althoff PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

Reducing Matrix Dimension

- Often, our data can be represented by an *m*-by-*n* matrix
- And this matrix can be closely approximated by the product of three matrices that share a small common dimension r

Compress / reduce dimensionality:

- 10⁶ rows; 10³ columns; no updates
- Random access to any cell(s); small error: OK

day	We	\mathbf{Th}	\mathbf{Fr}	\mathbf{Sa}	Su	New
customer	7/10/96	7/11/96	7/12/96	7/13/96	7/14/96	representation
ABC Inc.	1	1	1	0	0	[1 0]
DEF Ltd.	2	2	2	0	0	[2 0]
GHI Inc.	1	1	1	0	0	[1 0]
KLM Co.	5	5	5	0	0	[5 0]
\mathbf{Smith}	0	0	0	2	2	[0 2]
Johnson	0	0	0	3	3	[0 3]
Thompson	0	0	0	1	1	[0 1]

Note: The above matrix is really "2-dimensional." All rows can be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]

There are hidden, or latent factors, latent dimensions that – to a close approximation – explain why the values are as they appear in the data matrix

The axes of these dimensions can be chosen by:

- The first dimension is the direction in which the points exhibit the greatest variance
- The second dimension is the direction, orthogonal to the first, in which points show the 2nd greatest variance
- And so on..., until you have enough dimensions that remaining variance is very low

Rank is "Dimensionality"

- Q: What is rank of a matrix A?
- A: Number of linearly independent rows of A
- Cloud of points 3D space:
 - Think of point positions as a matrix: $\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \end{bmatrix}$

- We can rewrite coordinates more efficiently!
 - Old basis vectors: [1 0 0] [0 1 0] [0 0 1]
 - New basis vectors: [1 2 1] [-2 -3 1]
 - Then A has new coordinates: [1 0], B: [0 1], C: [1 -1]
 - Notice: We reduced the number of dimensions/coordinates!

Goal of dimensionality reduction is to discover the axes of data!

Rather than representing every point with 2 coordinates we represent each point with 1 coordinate (corresponding to the position of the point on the red line).

By doing this we incur a bit of **error** as the points do not exactly lie on the line

SVD: Singular Value Decomposition

Reducing Matrix Dimension

 Gives a decomposition of any matrix into a product of three matrices:

- There are strong constraints on the form of each of these matrices
 - Results in a unique* decomposition
- From this decomposition, you can choose any number r of intermediate concepts (latent factors) in a way that minimizes the reconstruction error

SVD – Definition $\mathbf{A} \approx \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i^{\mathsf{T}}$

- A: Input data matrix
 - m x n matrix (e.g., m documents, n terms)

U: Left singular vectors

- m x r matrix (m documents, r concepts)
- Σ: Singular values
 - r x r diagonal matrix (strength of each 'concept') (r : rank of the matrix A)
- V: Right singular vectors
 - n x r matrix (n terms, r concepts)

 $\mathbf{A} \approx \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i^{\mathsf{T}}$

If we set $\sigma_2 = 0$, then the green columns may as well not exist.

 $\sigma_i \dots$ scalar $u_i \dots$ vector $v_i \dots$ vector

SVD – Properties

- It is **always** possible to decompose a real matrix **A** into $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^{\mathsf{T}}$, where
- *U*, Σ, *V*: unique*
- U, V: column orthonormal
 - $U^T U = I; V^T V = I$ (*I*: identity matrix)
 - (Columns are orthogonal unit vectors)
- Σ: diagonal
 - Entries (singular values) are positive, and sorted in decreasing order ($\sigma_1 \ge \sigma_2 \ge ... \ge 0$)

* Up to permutations for redundant singular values and orientation of singular vectors (URL for details)

Consider a matrix. What does SVD do?

• $A = U \Sigma V^T$ - example: Users to Movies

0.13	0.02	-0.01
0.41	0.07	-0.03
0.55	0.09	-0.04
0.68	0.11	-0.05
0.15	-0.59	0.65
0.07	-0.73	-0.67
0.07	-0.29	0.32

0.56	0.59	0.56	0.09	0.09
0.12	-0.02	0.12	-0.69	-0.69
0.4	-0.8	0.4	0.09	0.09

• $A = U \Sigma V^{T}$ - example: Users to Movies

• $A = U \Sigma V^T$ - example:

Movies, users and concepts:

- U: user-to-concept matrix
- V: movie-to-concept matrix
- Σ: its diagonal elements: 'strength' of each concept

Dimensionality Reduction with SVD

SVD – Dimensionality Reduction

Movie 1 rating

- Instead of using two coordinates (x, y) to describe point locations, let's use only one coordinate
 Doint's position is its location along vector at
- Point's position is its location along vector v_1

SVD – Dimensionality Reduction

More detailsQ: How is dim. reduction done?

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Page 25

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

This is Rank 2 approximation to A. We could also do Rank 1 approx. The larger the rank the more accurate the approximation.

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

This is Rank 2 approximation to A. We could also do Rank 1 approx. The larger the rank the more accurate the approximation.

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

This is Rank 2 approximation to A. We could also do Rank 1 approx. The larger the rank the more accurate the approximation

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

	- [1	1	0	0		0.92	0.95	0.92	0.01	0.01	
3	3	3	3	0	0		2.91	3.01	2.91	-0.01	-0.01	
4	1	4	4	0	0		3.90	4.04	3.90	0.01	0.01	Rec
1	5	5	5	0	0	~	4.82	5.00	4.82	0.03	0.03	data
()	2	0	4	4		0.70	0.53	0.70	4.11	4.11	
()	0	0	5	5		-0.69	1.34	-0.69	4.78	4.78	
)	1	0	2	2		0.32	0.23	0.32	2.01	2.01	

Reconstructed data matrix B

Reconstruction Error is quantified by the Frobenius norm: $\|M\|_{F} = \sqrt{\sum_{ij} M_{ij}^{2}} \qquad \qquad \|A-B\|_{F} = \sqrt{\sum_{ij} (A_{ij}-B_{ij})^{2}}$

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

SVD – Best Low Rank Approx.

Fact: SVD gives 'best' axis to project on:

'best' = minimizing the sum of reconstruction errors

Σ

 $||A - B||_F = \sqrt{\sum_{ij} (A_{ij} - B_{ij})^2}$

SVD – Conclusions so far

• SVD: $A = U \Sigma V^T$: unique*

- U: user-to-concept factors
- V: movie-to-concept factors
- Σ : strength of each concept
- Q: So what's a good value for r?
- Let the *energy* of a set of singular values be the sum of their squares.
- Pick r so the retained singular values have at least 90% of the total energy.

Back to our example:

- With singular values 12.4, 9.5, and 1.3, total energy = 245.7
- If we drop 1.3, whose square is only 1.7, we are left with energy 244, or over 99% of the total

01/22/2023

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

How to Compute SVD

Finding Eigenpairs

How do we actually compute SVD?

- First we need a method for finding the principal eigenvalue (the largest one) and the corresponding eigenvector of a symmetric matrix
- *M* is *symmetric* if m_{ij} = m_{ji} for all *i* and *j*Method:
 - Start with any "guess eigenvector" x₀
 - Construct $x_{k+1} = \frac{Mx_k}{||Mx_k||}$ for k = 0, 1, ...
 - II ... I denotes the Frobenius norm
 - Stop when consecutive \boldsymbol{x}_k show little change

Example: Iterative Eigenvector

$$M = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \mathbf{x}_{0} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\frac{M\mathbf{x}_{0}}{||M\mathbf{x}_{0}||} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} /\sqrt{34} = \begin{pmatrix} 0.51 \\ 0.86 \end{pmatrix} = \mathbf{x}_{1}$$
$$\frac{M\mathbf{x}_{1}}{||M\mathbf{x}_{1}||} = \begin{pmatrix} 2.23 \\ 3.60 \end{pmatrix} /\sqrt{17.93} = \begin{pmatrix} 0.53 \\ 0.85 \end{pmatrix} = \mathbf{x}_{2}$$

01/22/2023

.

Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547

Finding the Principal Eigenvalue

- Once you have the principal eigenvector \boldsymbol{x} , you find its eigenvalue λ by $\lambda = \boldsymbol{x}^T \boldsymbol{M} \boldsymbol{x}$.
 - In proof: We know $x\lambda = Mx$ if λ is the eigenvalue; multiply both sides by x^T on the left.
 - Since $\mathbf{x}^T \mathbf{x} = 1$ we have $\lambda = \mathbf{x}^T M \mathbf{x}$
- Example: If we take x^T = [0.53, 0.85], then

$$\lambda = \begin{bmatrix} 0.53 & 0.85 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix} = 4.25$$

Finding More Eigenpairs

- Eliminate the portion of the matrix M that can be generated by the first eigenpair, λ and x: $M^* := M - \lambda x x^T$
- Recursively find the principal eigenpair for M^{*}, eliminate the effect of that pair, and so on

Example:

$$M^* = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} - 4.25 \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix} \begin{bmatrix} 0.53 & 0.85 \end{bmatrix} = \begin{bmatrix} -0.19 & 0.09 \\ 0.09 & 0.07 \end{bmatrix}$$

How to Compute the SVD

- Start by supposing $A = U\Sigma V^T$ $A^T = (U\Sigma V^T)^T = (V^T)^T \Sigma^T U^T = V\Sigma U^T$
 - Why? (1) Rule for transpose of a product; (2) the transpose of the transpose and the transpose of a diagonal matrix are both the identity functions
- $A^{T}A = V\Sigma U^{T}U\Sigma V^{T} = V\Sigma^{2}V^{T}$
 - Why? U is orthonormal, so $U^T U$ is an identity matrix
- Also note that Σ² is a diagonal matrix whose *i*-th element is the square of the *i*-th element of Σ
 A^TAV = VΣ²V^TV = VΣ²
 - Why? V is also orthonormal

Computing the SVD –(2)

- Starting with $(A^T A)V = V\Sigma^2$
 - Note that therefore the *i*-th column of *V* is an eigenvector of A^TA , and its eigenvalue is the *i*-th element of Σ^2
- Thus, we can find V and Σ by finding the eigenpairs for $A^T A$
 - Once we have the eigenvalues in Σ², we can find the singular values by taking the square root of these eigenvalues
- Symmetric argument, AA^T gives us U

SVD – Complexity

To compute the full SVD using specialized methods:

O(nm²) or O(n²m) (whichever is less)

But:

- Less work, if we just want singular values
- or if we want the first k singular vectors
- or if the matrix is sparse
- Implemented in linear algebra packages like
 LINPACK, Matlab, SPlus, Mathematica ...

Example of SVD

Q: Find users that like 'Matrix'

A: Map query into a 'concept space' – how?

• Q: Find users that like 'Matrix'

A: Map query into a 'concept space' – how?

Compactly, we have: q_{concept} = q V

Observation: User *d* that rated ('Alien', 'Serenity') will be similar to user *q* that rated ('Matrix'), although *d* and *q* have zero ratings in common!

SVD: Drawbacks

- Optimal low-rank approximation in terms of Frobenius norm
- Interpretability problem:
 - A singular vector specifies a linear combination of all input columns or rows

- Lack of sparsity:

Singular vectors are dense!

- It is common for the matrix A that we wish to decompose to be very sparse
- But *U* and *V* from a SVD decomposition will
 not be sparse
- CUR decomposition solves this problem by using only (randomly chosen) rows and columns of A

 Goal: Express A as a product of matrices C, U, R Make ||A - C · U · R||_F small
 "Constraints" on C and R:

 Goal: Express A as a product of matrices C, U, R Make ||A - C · U · R||_F small
 "Constraints" on C and R:

 Goal: Express A as a product of matrices C, U, R Make ||A - C · U · R||_F small
 "Constraints" on C and R:

Page 54

Computing U

- Let W be the "intersection" of sampled columns C and rows R
- Def: W⁺ is the pseudoinverse
 - Let SVD of $W = X Z Y^T$
 - Then: $\boldsymbol{W}^+ = \boldsymbol{Y} \boldsymbol{Z}^+ \boldsymbol{X}^T$
 - Z⁺: reciprocals of non-zero singular values: $Z_{ii}^{+} = 1/Z_{ii}$

Which Rows and Columns?

- To decrease the expected error between A and its decomposition, we must pick rows and columns in a non-uniform manner
- The importance of a row or column of A is the square of its Frobenius norm
 - That is, the sum of the squares of its elements.
- When picking rows and columns, the probabilities must be proportional to importance
- Example: [3,4,5] has importance 50, and [3,0,1] has importance 10, so pick the first 5 times as often as the second

CUR: Row Sampling Algorithm

Sampling columns (similarly for rows):

Input: matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, sample size cOutput: $\mathbf{C}_d \in \mathbb{R}^{m \times c}$ 1. for x = 1 : n [column distribution] 2. $P(x) = \sum_i \mathbf{A}(i, x)^2 / \sum_{i,j} \mathbf{A}(i, j)^2$ 3. for i = 1 : c [sample columns] 4. Pick $j \in 1 : n$ based on distribution P(x)5. Compute $\mathbf{C}_d(:, i) = \mathbf{A}(:, j) / \sqrt{cP(j)}$

Note this is a randomized algorithm, same column can be sampled more than once

Intuition

Rough and imprecise intuition behind CUR

- CUR is more likely to pick points away from the origin
 - Assuming smooth data with no outliers these are the directions of maximum variation
- **Example:** Assume we have 2 clouds at an angle
 - SVD dimensions are orthogonal and thus will be in the middle of the two clouds
 - CUR will find the two clouds (but will be redundant)

CUR: Provably good approx. to SVD

For example:

Select $c = O\left(\frac{k \log k}{\epsilon^2}\right)$ columns of A using ColumnSelect algorithm (slide 56)

• Select
$$r = O\left(\frac{k \log k}{\epsilon^2}\right)$$
 rows of A using RowSelect algorithm (slide 56)

• Set $U = W^+_{CUR \text{ error}}$ SVD error • Then: $||A - CUR||_F \le (2 + \varepsilon) ||A - A_K||_F$ with probability 98% In practice: Pick 4k cols/rows for a "rank-k" approximation

01/22/2023

CUR: Pros & Cons

+ Easy interpretation

 Since the basis vectors are actual columns and rows

+ Sparse basis

 Since the basis vectors are actual columns and rows

Duplicate columns and rows

Columns of large norms will be sampled many times

SVD vs. CUR

SVD vs. CUR: Simple Experiment

DBLP bibliographic data

- Author-to-conference big sparse matrix
- A_{ij}: Number of papers published by author *i* at conference *j*
- 428K authors (rows), 3659 conferences (columns)
 - Very sparse

Want to reduce dimensionality

- How much time does it take?
- What is the reconstruction error?
- How much space do we need?

Results: DBLP- big sparse matrix

Accuracy:

1 – relative sum squared errors

Space ratio:

#output matrix entries / #input matrix entries CPU time

Sun, Faloutsos: Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM '07.

Please give us feedback https://bit.ly/547feedback