Announcements

Deadlines today, 11:59 PM:

- Colab 0, Colab 1
- You can submit many times and will get immediate feedback

Deadlines next Thu, 11:59 PM:

- HW1, Colab 2

How to find teammates for project?

- Ed Discussion Board
- Make sure you have a good dataset accessible

Theory of Locality Sensitive Hashing

CS547 Machine Learning for Big Data Tim Althoff

Recap: Finding similar documents

- Task: Given a large number (\boldsymbol{N} in the millions or billions) of documents, find "near duplicates"
- Problem:
- Too many documents to compare all pairs
- Solution: Hash documents so that similar documents hash into the same bucket
- Documents in the same bucket are then candidate pairs whose similarity is then evaluated

Recap: The Big Picture

Recap: Shingles

- A k-shingle (or k-gram) is a sequence of k tokens that appears in the document
- Example: $\mathbf{k}=\mathbf{2}$; $\mathbf{D}_{\mathbf{1}}=\mathrm{abcab}$

Set of 2-shingles: $C_{1}=S\left(D_{1}\right)=\{a b, b c, c a\}$

- Represent a doc by a set of hash values of its k-shingles
- A natural similarity measure is then the Jaccard similarity:
$\operatorname{sim}\left(D_{1}, D_{2}\right)=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|$
- Similarity of two documents is the Jaccard similarity of their shingles

Recap: Minhashing

- Min-Hashing: Convert large sets into short signatures, while preserving similarity: $\operatorname{Pr}\left[h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)$

Permutation π

2	4	3	
3	2	4	
7	1	7	
6	3	2	
1	6	2	
5	7	1	
4	7	1	
		5	5

Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities of columns and signatures (approx.) match!

	$1-3$	$2-4$	$1-2$	$3-4$
	0.75	0.75	0	0

Sig/Sig $0.67 \begin{array}{lllll}1.00 & 0 & 0\end{array}$

Recap: LSH

- Hash columns of the signature matrix M : Similar columns likely hash to same bucket
- Divide matrix M into \boldsymbol{b} bands of \boldsymbol{r} rows ($M=b \cdot r$)
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band

Today: Generalizing Min-hash

Design a locality sensitive hash function (for a given distance metric)

Apply the

 "Bands" technique
The S-Curve

- The S-curve is where the "magic" happens

Similarity t of two sets
This is what 1 hash-code gives you

$$
\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)
$$

This is what we want!
How to get a step-function? By choosing r and b !

How Do We Make the S-curve?

- Remember: \boldsymbol{b} bands, r rows/band
- Let $\operatorname{sim}\left(\boldsymbol{C}_{1}, \boldsymbol{C}_{2}\right)=\boldsymbol{s}$

What's the prob. that at least 1 band is equal?

- Pick some band (r rows)
- Prob. that elements in a single row of columns \mathbf{C}_{1} and \mathbf{C}_{2} are equal $=\boldsymbol{s}$
- Prob. that all rows in a band are equal $=s^{r}$
- Prob. that some row in a band is not equal =1-sr
- Prob. that all bands are not equal $=\left(1-s^{r}\right)^{b}$
- Prob. that at least 1 band is equal =1-(1-sr)
$P\left(C_{1}, C_{2}\right.$ is a candidate pair $)=1-\left(1-s^{r}\right)^{b}$

Picking r and b : The S-curve

- Picking r and b to get the best S-curve
- 50 hash-functions ($r=5, b=10$)

S-curves as a func. of b and r

Given a fixed threshold \boldsymbol{s}.

We want choose \boldsymbol{r} and \boldsymbol{b} such that the P(Candidate pair) has a "step" right around s.

v.cs.washington.edu/csep590a

Theory of LSH

general hashing

locality-sensitive hashing

Theory of LSH

- We have used LSH to find similar documents
- More generally, we found similar columns in large sparse matrices with high Jaccard similarity
- Can we use LSH for other distance measures?
- e.g., Euclidean distances, Cosine distance
- Let's generalize what we've learned!

Distance Metric

- $\mathbf{d}()$ is a distance metric if it is a function from pairs of points \mathbf{x}, \mathbf{y} to real numbers such that:
- $d(x, y) \geq 0$
- $d(x, y)=0$ iff $x=y$
- $d(x, y)=d(y, x)$
- $d(x, y) \leq d(x, z)+d(z, y)$ (triangle inequality)
- Jaccard distance for sets = 1 - Jaccard similarity
- Cosine distance for vectors = angle between the vectors
- Euclidean distances:
- L_{2} norm: $\mathrm{d}(\mathrm{x}, \mathrm{y})=$ square root of the sum of the squares of the differences between x and y in each dimension
- The most common notion of "distance"
- L_{1} norm: sum of absolute value of the differences in each dimension
- Manhattan distance = distance if you travel along coordinates only

Families of Hash Functions

- For Min-Hashing signatures, we got a Min-Hash function for each permutation of rows
- A "hash function" is any function that allows us to say whether two elements are "equal"
- Shorthand: $h(x)=h(y)$ means " h says x and y are equal"
- A family of hash functions is any set of hash functions from which we can pick one at random efficiently
- Example: The set of Min-Hash functions generated from permutations of rows

Locality-Sensitive (LS) Families

- Suppose we have a space S of points with a distance metric $d(x, y)$

Critical assumption
A family \boldsymbol{H} of hash functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for any \boldsymbol{x} and \boldsymbol{y} in S :

1. If $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y}) \leq \boldsymbol{d}_{1}$, then the probability over all $\boldsymbol{h} \in \boldsymbol{H}$, that $\boldsymbol{h}(x)=\boldsymbol{h}(\boldsymbol{y})$ is at least \boldsymbol{p}_{1}
2. If $d(x, y) \geq d_{2}$, then the probability over all $\boldsymbol{h} \in \boldsymbol{H}$, that $\boldsymbol{h}(x)=\boldsymbol{h}(y)$ is at most $\boldsymbol{p}_{\boldsymbol{2}}$

With a LS Family we can do LSH!

$\mathrm{A}\left(d_{11} d_{2 \prime} p_{11} p_{2}\right)$-sensitive function

$$
\begin{aligned}
& \text { For all } h \in H \\
& P\left[h(x)=h\left(y_{1}^{\prime}\right)\right] \geq p_{1} \\
& P\left[h(x)=h\left(y_{2}\right)\right] \leq p_{2}
\end{aligned}
$$

$\mathrm{A}\left(d_{1}, d_{21} p_{1}, p_{2}\right)$-sensitive function

Distance $\mathrm{d}(\mathrm{x}, \mathrm{y}) \longrightarrow$

$\mathrm{A}\left(d_{1}, d_{21} p_{1}, p_{2}\right)$-sensitive function

Large distance, low probability of hashing to the same value

Distance $d(x, y)$

$\mathrm{A}\left(d_{1}, d_{21} p_{1}, p_{2}\right)$-sensitive function

Large distance, low probability of hashing to the same value

Distance $\mathrm{d}(\mathrm{x}, \mathrm{y})$

Example of LS Family: Min-Hash

- Let:
- S = space of all sets,
- d = Jaccard distance,
- \boldsymbol{H} is family of Min-Hash functions for all permutations of rows
- Then for any hash function $\boldsymbol{h} \in \boldsymbol{H}$:

$$
\operatorname{Pr}[h(x)=h(y)]=1-d(x, y)
$$

- Simply restates theorem about Min-Hashing in terms of distances rather than similarities

Example: LS Family - (2)

- Claim: Min-hash \boldsymbol{H} is a (1/3, 2/3, 2/3, 1/3)sensitive family for \boldsymbol{S} and \boldsymbol{d}.

If distance $\leq 1 / 3$
(so similarity $\geq 2 / 3$)

Then probability that Min-Hash values agree is $\geq 2 / 3$

- For Jaccard similarity, Min-Hashing gives a $\left(d_{1}, d_{2},\left(1-d_{1}\right),\left(1-d_{2}\right)\right)$-sensitive family for any $d_{1}<d_{2}$

Amplifying a LS-Family

- Can we reproduce the "S-curve" effect we saw before for any LS family?

- The "bands" technique we learned for signature matrices carries over to this more general setting
- Can do LSH with any ($d_{1}, d_{2}, p_{1}, p_{2}$)-sensitive family!
- Two constructions:
" AND construction like "rows in a band"
" OR construction like "many bands"

Amplifying Hash Functions: AND and OR

AND of Hash Functions

- Given family \boldsymbol{H}, construct family \boldsymbol{H}^{\prime} consisting of r independent functions from \boldsymbol{H}
- For $\boldsymbol{h}=\left[\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{r}\right]$ in \mathbf{H}^{\prime}, we say $\mathbf{h}(\mathbf{x})=\mathbf{h}(\mathbf{y})$ if and only if $\mathbf{h}_{\mathbf{i}}(\mathbf{x})=\mathbf{h}_{\mathbf{i}}(\mathbf{y})$ for all \boldsymbol{i} $1 \leq i \leq r$
- Note this corresponds to creating a band of size \mathbf{r}
- Theorem: If \boldsymbol{H} is $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive, then \mathbf{H}^{\prime} is $\left(d_{1}, d_{2},\left(p_{1}\right)^{r},\left(p_{2}\right)^{r}\right)$-sensitive
- Proof: Use the fact that $\bar{h}_{i}^{\prime \prime}$ sare independent

Also lowers probability
for small distances (Bad)
Lowers probability for
large distances (Good)

Subtlety Regarding Independence

- Independence of hash functions (HFs) really means that the prob. of two HFs saying "yes" is the product of each saying "yes"
- But two particular hash functions could be highly correlated
- For example, in Min-Hash if their permutations agree in the first one million entries
- However, the probabilities in definition of a LSH-family are over all possible members of $\boldsymbol{H}, \boldsymbol{H}^{\prime}$ (i.e., average case and not the worst case)

OR of Hash Functions

- Given family \boldsymbol{H}, construct family \boldsymbol{H}^{\prime} consisting of \boldsymbol{b} independent functions from \boldsymbol{H}
- For $\boldsymbol{h}=\left[h_{1}, \ldots, h_{b}\right]$ in H^{\prime}, $h(x)=h(y)$ if and only if $h_{i}(x)=h_{i}(y)$ for at least $\mathbf{1} \boldsymbol{i}$
- Theorem: If \boldsymbol{H} is $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive, then H^{\prime} is $\left.\left(d_{1}, d_{2}, \mathbf{1}-\left(\mathbf{1}-p_{1}\right)^{b}, \mathbf{1 - (1 - p}\right)^{b}\right)$-sensitive
- Proof: Use the fact thot $\boldsymbol{h}_{\boldsymbol{i}}$'s are îhdependent

Raises probability for
small distances (Good)

Raises probability for
large distances (Bad)

Effect of AND and OR Constructions

- AND makes all probs. shrink, but by choosing r correctly, we can make the lower prob. approach 0 while the higher does not
- OR makes all probs. grow, but by choosing \boldsymbol{b} correctly, we can make the higher prob. approach 1 while the lower does not

Similarity of a pair of items

Similarity of a pair of items

Combine AND and OR Constructions

- By choosing \boldsymbol{b} and \boldsymbol{r} correctly, we can make the lower probability approach 0 while the higher approaches 1
- As for the signature matrix, we can use the AND construction followed by the OR construction
- Or vice-versa
- Or any sequence of AND's and OR's alternating

Composing Constructions

- r-way AND followed by b-way OR construction
- Exactly what we did with Min-Hashing
- AND: If bands match in all r values hash to same bucket
- OR: Cols that have ≥ 1 common bucket \rightarrow Candidate
- Take points x and y s.t. $\operatorname{Pr}[h(x)=h(y)]=s$
- \boldsymbol{H} will make (\mathbf{x}, \mathbf{y}) a candidate pair with prob. \mathbf{s}
- Construction makes (\mathbf{x}, \mathbf{y}) a candidate pair with probability $1-\left(1-s^{r}\right)^{b} \quad$ The S-Curve!
- Example: Take \mathbf{H} and construct \mathbf{H}^{\prime} by the AND construction with $r=4$. Then, from \mathbf{H}^{\prime}, construct $\mathbf{H}^{\prime \prime}$ by the $\mathbf{O R}$ construction with $\boldsymbol{b}=4$

Table for Function 1-(1-54)4

\mathbf{s}	$\mathrm{p}=1-\left(1-\mathrm{s}^{4}\right)^{4}$
.2	.0064
.3	.0320
.4	.0985
.5	.2275
.6	.4260
.7	.6666
.8	.8785
.9	.9860

$r=4, b=4$ transforms a
(.2, 8, .8, 2)-sensitive family into a (.2,.8,.8785,.0064)-sensitive family.

How to choose r and b

Picking r and b : The S-curve

- Picking r and b to get desired performance
- 50 hash-functions ($\boldsymbol{r}=5, \boldsymbol{b}=10$)

Similarity s

Yellow area X : False Negative rate These are pairs with sim > sut the \boldsymbol{X} fraction won't share a band and then will never become candidates. This means we will never consider these pairs for (slow/exact) similarity calculation!
Blue area Y: False Positive rate These are pairs with sim <s but we will consider them as candidates. This is not too bad, we will consider them for (slow/exact) similarity computation and discard them.

Picking r and b : The S-curve

- Picking r and b to get desired performance
- 50 hash-functions (r^{*} b = 50)

OR-AND Composition

- Apply a b-way OR construction followed by an r-way AND construction
- Transforms similarity s (probability p) into (1-(1-s) $)^{b}$
- The same S-curve, mirrored horizontally and vertically
- Example: Take \mathbf{H} and construct \mathbf{H}^{\prime} by the OR construction with $\boldsymbol{b}=4$. Then, from \mathbf{H}^{\prime}, construct $\mathbf{H}^{\prime \prime}$ by the AND construction with $r=4$

Table for Function (1-(1-s)4 $)^{4}$

\mathbf{s}	$\mathrm{p}=\left(1-(1-\mathbf{s})^{4}\right)^{4}$
.1	.0140
.2	.1215
.3	.3334
.4	.5740
.5	.7725
.6	.9015
.7	.9680
.8	.9936

The example transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9936, .1215)-sensitive family

Cascading Constructions

- Example: Apply the $(4,4)$ OR-AND construction followed by the $(4,4)$ AND-OR construction
- Transforms a (.2, .8, .8, .2)-sensitive family into a (.2, .8, .9999996, .0008715)-sensitive family
- Note this family uses 256 ($=4 * 4^{*} 4 * 4$) of the original hash functions

Summary

- Pick any two distances $\boldsymbol{d}_{\mathbf{1}}<\boldsymbol{d}_{\mathbf{2}}$
- Start with a $\left(d_{1}, d_{2},\left(1-d_{1}\right),\left(1-d_{2}\right)\right)$-sensitive family
- Apply constructions to amplify $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family, where p_{1} is almost 1 and p_{2} is almost 0
- The closer to 0 and 1 we want to get, the more hash functions must be used!

LSH for other distance metrics

LSH for other Distance Metrics

- LSH methods for other distance metrics:
- Cosine distance: Random hyperplanes
- Euclidean distance: Project on lines

Summary of what we will learn

Summary of what we will learn

Cosine Distance

- Cosine distance = angle between vectors from the origin to the points in question $\mathrm{d}(\mathrm{A}, \mathrm{B})=\theta=\arccos (\mathbf{A} \cdot \mathrm{B} /\|\mathbf{A}\| \cdot\|B\|)$
- Has range $[\mathbf{0}, \boldsymbol{\pi}]$ (equivalently $\left[0,180^{\circ}\right]$) $\leftarrow \frac{\mathrm{A} \cdot \mathrm{B}}{\|\mathrm{B}\|} \rightarrow$
- Can divide θ by $\boldsymbol{\pi}$ to have distance in range [0,1]
- Cosine similarity = 1-d(A,B)
- But often defined as cosine sim: $\cos (\theta)=\frac{A \cdot B}{\|A\|\|B\|}$

Opposite scores
Score Vectors in opposite direction Angle between then is near 180 deg Cosine of angle is near -1 i.e. -100%

LSH for Cosine Distance

- For cosine distance, there is a technique called Random Hyperplanes
- Technique similar to Min-Hashing
- Random Hyperplanes method is a $\left(d_{1}, d_{2},\left(1-d_{1} / \pi\right),\left(1-d_{2} / \pi\right)\right)$-sensitive family for any \boldsymbol{d}_{1} and \boldsymbol{d}_{2}
- Reminder: $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive

1. If $d(x, y) \leq d_{1}$, then prob. that $h(x)=h(y)$ is at least p_{1}
2. If $d(x, y) \geq d_{2}$, then prob. that $h(x)=h(y)$ is at most p_{2}

Random Hyperplanes

- Each vector \boldsymbol{v} determines a hash function $\boldsymbol{h}_{\boldsymbol{v}}$ with two buckets
- $h_{v}(x)=+1$ if $v \cdot x \geq 0 ;=-1$ if $v \cdot x<0$
- LS-family $\boldsymbol{H}=$ set of all functions derived from any vector
- Claim: For points \mathbf{x} and \mathbf{y},

$$
\operatorname{Pr}[h(x)=h(y)]=1-d(x, y) / \pi
$$

Proof of Claim

Look in the plane of x and y.

Proof of Claim

Look in the plane of x and y.

Hyperplane

Proof of Claim

Look in the plane of x and y.
 Hyperplane normal to \boldsymbol{v}^{\prime}. Here $h(x) \neq \mathrm{h}(\mathrm{y})$

Proof of Claim

Signatures for Cosine Distance

- Pick some number of random vectors, and hash your data for each vector
- The result is a signature (sketch) of +1's and -1's for each data point
- Can be used for LSH like we used the Min-Hash signatures for Jaccard distance
- Amplify using AND/OR constructions

How to pick random vectors?

- Expensive to pick a random vector in \boldsymbol{M} dimensions for large \boldsymbol{M}
- Would have to generate \boldsymbol{M} random numbers
- A more efficient approach
- It suffices to consider only vectors \boldsymbol{v} consisting of +1 and -1 components
- Why? Assuming data is random, then vectors of $+/-1$ cover the entire space evenly (and does not bias in any way)

LSH for Euclidean Distance

- Idea: Hash functions correspond to lines
- Partition the line into buckets of size a
- Hash each point to the bucket containing its projection onto the line
"An element of the "Signature" is a bucket id for that given projection line
- Nearby points are always close; distant points are rarely in same bucket

Projection of Points

- "Lucky" case:
- Points that are close hash in the same bucket
- Distant points end up in different buckets

Projection of Points

- "Lucky" case:
- Points that are close hash in the same bucket
- Distant points end up in different buckets

. Two "unlucky" cases:
- Top: unlucky quantization
- Bottom: unlucky projection

Multiple Projections

(
0

Projection of Points

If $d \ll a$, then the chance the points are in the same bucket is at least 1 - d/a.
Points at distance d

exactly 1 - dla when the randomly chosen line is parallel to the line from x to y

Bucket width a

Projection of Points

A LS-Family for Euclidean Distance

- If points are distance $\boldsymbol{d} \leq \boldsymbol{a / 2}$, prob. they are in same bucket $\geq 1-d / a=1 / 2$
- If points are distance $\boldsymbol{d} \geq \mathbf{2 a}$ apart, then they can be in the same bucket only if $d \cos \theta \leq a$
- $\cos \theta \leq 1 / 2$
- $60 \leq \theta \leq 90$, i.e., at most $1 / 3$ probability
- Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a
- Amplify using AND-OR cascades

Sun Mnar

Candidate pairs: those pairs of
\rightarrow signatures that we need to test for similarity
Design a $\left(d_{1 \prime} d_{2 \prime} p_{1 \prime} p_{2}\right)$-sensitive family of hash functions (for that particular distance metric)

Amplify the family using AND and OR

Two Important Points

- Property $\mathrm{P}\left(\mathrm{h}\left(\mathrm{C}_{1}\right)=\mathrm{h}\left(\mathrm{C}_{2}\right)\right)=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$ of hash function h is the essential part of LSH, without which we can't do anything
- LS-hash functions transform data to signatures so that the bands technique (AND, OR constructions) can then be applied

Please give us feedback © https://bit.ly/547feedback

