
Recitation sessions:
 Review of basic probability and proof

techniques

▪ Tuesday, Jan 10, 3:30-5pm CSE2 371

 Review of linear algebra:

▪ Thursday, Jan 12, 3:30-5pm CSE2 371

For office hours – please check our website

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 1

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 3

Given a query image patch, find similar images

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 4

 Collect billions of images
 Determine feature vector for each image (4k dim)
 Given a query Q, find nearest neighbors FAST

Distance

Image B Feature Vector

Image Q Feature Vector

Similarity (Q,B)

0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 00 0 …

1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 00 1 …

…

…

Q

B

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 5

Q

Nearest neighbor

query in the

embedding space

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 6

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 7

 Many problems can be expressed as
finding “similar” sets:
▪ Find near-neighbors in high-dimensional space

 Examples:
▪ Pages with similar words

▪ For duplicate detection, classification by topic

▪ Customers who purchased similar products
▪ Products with similar customer sets

▪ Images with similar features
▪ Image completion

▪ Recommendations and search

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 8

 Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
▪ For example:

▪ An image is a long vector of pixel colors

▪ A documents might be a bag-of-words or set of shingles

 And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
▪ which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

 Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that

are within distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔

 Note: Naïve solution would take 𝑶 𝑵𝟐

where 𝑵 is the number of data points

 MAGIC: This can be done in 𝑶 𝑵 !! How??
01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 9

 LSH is really a family of related techniques
 In general, one throws items into buckets using

several different “hash functions”
 You examine only those pairs of items that share

a bucket for at least one of these hash functions
 Upside: Designed correctly, only a small fraction

of pairs are ever examined
 Downside: There are false negatives – pairs of

similar items that never even get considered

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 10

 Suppose we need to find near-duplicate
documents among 𝑵 = 𝟏 million documents

▪ Naïvely, we would have to compute pairwise
similarities for every pair of docs

▪ 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

▪ At 105 secs/day and 106 comparisons/sec,
it would take 5 days

▪ For 𝑵 = 𝟏𝟎 million, it takes more than a year…

 Similarly, we have a dataset of 10m images,
quickly find the most similar to query image Q

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 12

1. Shingling: Converts a document into a set
representation (Boolean vector)

2. Min-Hashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

▪ Candidate pairs!

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 13

Docu-

ment

The set

of strings

of length k

that appear

in the docu-

ment

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 14

Step 1: Shingling:
Convert a document into a set

Docu-
ment

The set
of strings
of length k
that appear
in the docu-
ment

Step 1: Shingling: Converts a document into a set
 A k-shingle (or k-gram) for a document is a

sequence of k tokens that appears in the doc

▪ Tokens can be characters, words or something else,
depending on the application

▪ Assume tokens = characters for lecture examples

 To compress long shingles, we can hash them to
(say) 4 bytes

 Represent a document by the set of hash
values of its k-shingles

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 16

 Example: k=2; document D1= abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the shingles: h(D1) = {1, 5, 7}

 k = 8, 9, or 10 is often used in practice

 Benefits of shingles:

▪ Documents that are intuitively similar will have
many shingles in common

▪ Changing a word only affects k-shingles within
distance k-1 from the word

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 17

 Document D1 is represented by a set of its k-
shingles C1=S(D1)

 A natural similarity measure is the
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|

3 in intersection.

8 in union.

Jaccard similarity

= 3/8

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 18

Encode sets using 0/1 (bit, Boolean) vectors
 Rows = elements (shingles)
 Columns = sets (documents)

▪ 1 in row e and column s if and
only if e is a member of s

▪ Column similarity is the Jaccard
similarity of the corresponding
sets (rows with value 1)

▪ Typical matrix is sparse!
 Each document is a column:

▪ Example: sim(C1 ,C2) = ?
▪ Size of intersection = 3; size of union = 6,

Jaccard similarity (not distance) = 3/6

▪ d(C1,C2) = 1 – (Jaccard similarity) = 3/6

0101

0111

1001

1000

1010

1011

0111

Documents

S
h
in

g
le

s
We don’t really construct the

matrix; just imagine it exists
01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 19

 So far:
▪ Documents to Sets of shingles

▪ Represent sets as Boolean vectors in a matrix

 Next goal: Find similar columns while
computing small signatures
▪ Similarity of columns == similarity of signatures

 Warnings:
▪ Comparing all pairs takes too much time: Job for LSH

▪ These methods can produce false negatives, and even false
positives (if the optional check is not made)

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 20

Step 2: Min-Hashing: Convert large sets to
short signatures, while preserving similarity

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

 Key idea: “hash” each column C to a small
signature h(C), such that:
▪ sim(C1, C2) is the same as the “similarity” of

signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:
▪ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Idea: Hash docs into buckets. Expect that
“most” pairs of near duplicate docs hash into
the same bucket!

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 22

 Goal: Find a hash function h(·) such that:

▪ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on
the similarity metric:

▪ Not all similarity metrics have a suitable
hash function

 There is a suitable hash function for
the Jaccard similarity: It is called Min-Hashing

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 23

 Permute the rows of the Boolean matrix using
some permutation 
▪ Thought experiment – not actually materialized

 Define minhash function for this permutation ,
h(C) = the number of the first (in the permuted
order) row in which column C has value 1.
▪ Denoted this as: h (C) = min (C)

 Apply, to all columns, several randomly chosen
permutations  to create a signature for each
column

 Result is a signature matrix: Columns = sets,
Rows = minhash values for each permutation 

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 24

Signature matrix M

1212

Input matrix
(Shingles x Documents)

h (C) = min (C)

1 0 1 0

1 0 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

2

3

7

6

1

5

4

1

2

3

4

5

6

7

0 1 0 1

Permutation 

1 0 1 0

1 0 0 1

1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 25

Signature matrix M

Input matrix
(Shingles x Documents)

h (C) = min (C)

1 0 1 0

1 0 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

4

2

1

3

6

7

5

1

2

3

4

5

6

7

Permutation 

0 1 0 1

1 0 0 1

0 1 0 1

1 0 1 0

1 0 1 0

0 1 0 1

1 0 1 0

1212

1412

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 26

Signature matrix M

Input matrix
(Shingles x Documents)

h (C) = min (C)

1 0 1 0

1 0 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

3

4

7

2

6

1

5

1

2

3

4

5

6

7

Permutation 

1 0 1 0

0 1 0 1

1 0 1 0

1 0 0 0

1 0 1 0

0 1 0 1

0 1 0 1

1212

1412

2121

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 27

 Students sometimes ask whether the minhash
value should be the original number of the
row, or the number in the permuted order (as
we did in our example)

 Answer: it doesn’t matter

▪ We only need to be consistent, and assure that
two columns get the same value if and only if their
first 1’s in the permuted order are in the same row

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 28

 Choose a random permutation 
 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Why?

▪ Let X be a doc (set of shingles), z X is a shingle

▪ Then: Pr[(z) = min((X))] = 1/|X|

▪ It is equally likely that any z X is mapped to the min element

▪ Let y be s.t. (y) = min((C1C2))

▪ Then either: (y) = min((C1)) if y  C1 , or

(y) = min((C2)) if y  C2

▪ So the prob. that both are true is the prob. y  C1  C2

▪ Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2)

01

10

00

11

00

00

One of the two

cols had to have

1 at position y

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 29

 Given cols C1 and C2, rows are classified as:
C1 C2

A 1 1

B 1 0

C 0 1

D 0 0

▪ Define: a = # rows of type A, etc.
 Note: sim(C1, C2) = a/(a +b +c)
 Then: Pr[h(C1) = h(C2)] = Sim(C1, C2)

▪ Look down the permuted cols C1 and C2 until we see a 1

▪ If it’s a type-A row, then h(C1) = h(C2)
If a type-B or type-C row, then not

01

10

00

11

00

00

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 30

 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Now generalize to multiple hash functions

 The similarity of two signatures is the
fraction of the hash functions in which they
agree

 Thus, the expected similarity of two
signatures equals the Jaccard similarity of the
columns or sets that the signatures represent
▪ And the longer the signatures, the smaller will be

the expected error

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 31

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

5

7

6

3

1

2

4

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation 

1212

1412

2121

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 32

 Permuting rows even once is prohibitive
 Row hashing!

▪ Pick K = 100 hash functions hi

▪ Ordering under hi gives a random permutation  of rows!

 One-pass implementation

▪ For each column c and hash-func. hi keep a “slot” M(i, c)
for the min-hash value of

▪ Initialize all M(i, c) = 

▪ Scan rows looking for 1s

▪ Suppose row j has 1 in column c

▪ Then for each hi :

▪ If hi(j) < M(i, c), then M(i, c) hi(j)

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)
01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 33

for each row r do begin
for each hash function hi do

compute hi (r);
for each column c

if c has 1 in row r
for each hash function hi do

if hi (r) < M(i, c) then

M(i, c) := hi (r);

end;

Important: so you hash r only

once per hash function, not

once per 1 in row r.

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 34

Row C1 C2

1 1 0

2 0 1

3 1 1

4 1 0

5 0 1

h(x) = x mod 5

g(x) = (2x+1) mod 5

h(1) = 1 1 ∞

g(1) = 3 3 ∞

h(2) = 2 1 2

g(2) = 0 3 0

h(3) = 3 1 2

g(3) = 2 2 0

h(4) = 4 1 2

g(4) = 4 2 0

h(5) = 0 1 0

g(5) = 1 2 0

M(i, C1) M(i, C2)

Signature matrix M

permutation

h(x) g(x)

1 3

2 0

3 2

4 4

0 1

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 35

Step 3: Locality Sensitive Hashing:
Focus on pairs of signatures likely to be from
similar documents

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

 Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

 LSH – General idea: Use a hash function that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

 For Min-Hash matrices:

▪ Hash columns of signature matrix M to many buckets

▪ Each pair of documents that hashes into the
same bucket is a candidate pair

1212

1412

2121

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 37

 Pick a similarity threshold s (0 < s < 1)

 Columns x and y of M are a candidate pair if
their signatures agree on at least fraction s of
their rows:
M (i, x) = M (i, y) for at least frac. s values of i

▪ We expect documents x and y to have the same
(Jaccard) similarity as their signatures

1212

1412

2121

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 38

 Big idea: Hash columns of
signature matrix M several times

 Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

 Candidate pairs are those that hash to the
same bucket

1212

1412

2121

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 39

Signature matrix M

r rows
per band

b bands

One
signature

1212

1412

2121

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 40

 Divide matrix M into b bands of r rows

 For each band, hash its portion of each
column to a hash table with k buckets

▪ Make k as large as possible

 Candidate column pairs are those that hash
to the same bucket for ≥ 1 band

 Tune b and r to catch most similar pairs,
but few non-similar pairs

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 41

Matrix M

r rows b bands

Buckets

Columns 2 and 6

are probably identical

(candidate pair)

Columns 6 and 7 are

surely different.

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 42

 There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

 Hereafter, we assume that “same bucket”
means “identical in that band”

 Assumption needed only to simplify analysis,
not for correctness of algorithm

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 43

Assume the following case:
 Suppose 100,000 columns of M (100k docs)
 Signatures of 100 integers (rows)
 Therefore, signatures take 40MB
 Goal: Find pairs of documents that

are at least s = 0.8 similar
 Choose b = 20 bands of r = 5 integers/band

1212

1412

2121

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 44

 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.8

▪ Since sim(C1, C2)  s, we want C1, C2 to be a candidate
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

 Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328

 Probability C1, C2 are not identical in all of the 20
bands: (1-0.328)20 = 0.00035
▪ i.e., about 1/3000th of the 80%-similar column pairs

are false negatives (we miss them)

▪ We would find 99.965% pairs of truly similar documents

1212

1412

2121

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 45

 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.3

▪ Since sim(C1, C2) < s we want C1, C2 to hash to NO
common buckets (all bands should be different)

 Probability C1, C2 identical in one particular
band: (0.3)5 = 0.00243

 Probability C1, C2 identical in at least 1 of 20
bands: 1 - (1 - 0.00243)20 = 0.0474
▪ In other words, approximately 4.74% pairs of docs

with similarity 0.3 end up becoming candidate pairs
▪ They are false positives since we will have to examine them

(they are candidate pairs) but then it will turn out their
similarity is below threshold s

1212

1412

2121

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 46

 Pick:
▪ The number of Min-Hashes (rows of M)
▪ The number of bands b, and
▪ The number of rows r per band

to balance false positives/negatives
▪ Note, M=b*r

 Example: If we had only 10 bands of 10 rows,
how would FP/FN change?

 Answer: The number of false positives would
go down, but the number of false negatives
would go up (it’s harder to become a
candidate pair in a bucket now).

1212

1412

2121

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 47

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

S
im

ila
ri
ty

 t
h
re

sh
o
ld

 s

No chance
if t < s

Probability = 1
if t > s

Say “yes” if you are
below the red line.

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 48

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 49

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

False
positives

False
negatives

s

Say “yes” if you
are below the line.

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 50

 Say columns C1 and C2 have similarity t
 Pick any band (r rows)

▪ Prob. that all rows in band equal = tr

▪ Prob. that some row in band unequal = 1 - tr

 Prob. that no band identical = (1 - tr)b

 Prob. that at least 1 band identical =
1 - (1 - tr)b

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 51

t r

1: All rows
of a band
are equal

1 -

2: Some row
of a band
unequal

()b

3: No
bands
identical

1 -

4: At least
one band
identical

Similarity t=sim(C1, C2) of two sets

Probability of
sharing at least

one bucket

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 52

 Similarity threshold s
 Prob. that at least 1 band is identical:

s 1-(1-s^r)^b

0.2 0.006

0.3 0.047

0.4 0.186

0.5 0.470

0.6 0.802

0.7 0.975

0.8 0.9996
01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 53

 Picking r and b to get the best S-curve

▪ 50 hash-functions (r=5, b=10)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Yellow area: False Negative rate
Blue area : False Positive rate

Similarity

P
ro

b
. s

h
ar

in
g

 a
 b

u
ck

et

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 54

 Tune M, b, r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures

 Check in main memory that candidate pairs
really do have similar signatures

 Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 55

 Shingling: Convert documents to set representation

▪ We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short signatures,
while preserving similarity

▪ We used similarity preserving hashing to generate
signatures with property Pr[h(C1) = h(C2)] = sim(C1, C2)

▪ We used hashing to get around generating random
permutations

 Locality-Sensitive Hashing: Focus on pairs of
signatures likely to be from similar documents

▪ We used hashing to find candidate pairs of similarity  s

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 56

01/22/2023 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 57

https://bit.ly/547feedback
https://bit.ly/547feedback

	Slide 1: Announcements
	Slide 2: Finding Similar Items: Locality Sensitive Hashing
	Slide 3: New thread: High dim. data
	Slide 4: Pinterest Visual Search
	Slide 5: How does it work?
	Slide 6: How does it work?
	Slide 7: Application: Visual Search
	Slide 8: A Common Metaphor
	Slide 9: Problem for today’s lecture
	Slide 10: LSH: Locality Sensitive Hashing
	Slide 11: Motivating Application: Finding Similar Documents
	Slide 12: Motivation for Min-Hash/LSH
	Slide 13: 3 Essential Steps for Similar Docs
	Slide 14: The Big Picture
	Slide 15: Shingling
	Slide 16: Documents as High-Dim Data
	Slide 17: Compressing Shingles
	Slide 18: Similarity Metric for Shingles
	Slide 19: From Sets to Boolean Matrices
	Slide 20: Outline: Finding Similar Columns
	Slide 21: Min-Hashing
	Slide 22: Hashing Columns (Signatures)
	Slide 23: Min-Hashing: Goal
	Slide 24: Min-Hashing: Overview
	Slide 25: Min-Hashing Example
	Slide 26: Min-Hashing Example
	Slide 27: Min-Hashing Example
	Slide 28: A Subtle Point
	Slide 29: The Min-Hash Property
	Slide 30: Four Types of Rows
	Slide 31: Similarity for Signatures
	Slide 32: Min-Hashing Example
	Slide 33: Implementation Trick
	Slide 34: Implementation
	Slide 35: Example Implementation
	Slide 36: Locality Sensitive Hashing
	Slide 37: LSH: Overview
	Slide 38: LSH: Overview
	Slide 39: LSH for Min-Hash
	Slide 40: Partition M into b Bands
	Slide 41: Partition M into Bands
	Slide 42: Hashing Bands
	Slide 43: Simplifying Assumption
	Slide 44: Example of Bands
	Slide 45: C1, C2 are 80% Similar
	Slide 46: C1, C2 are 30% Similar
	Slide 47: LSH Involves a Tradeoff
	Slide 48: Analysis of LSH – What We Want
	Slide 49: What 1 Band of 1 Row Gives You
	Slide 50: What 1 Band of 1 Row Gives You
	Slide 51: b bands, r rows/band
	Slide 52: What b Bands of r Rows Gives You
	Slide 53: Example: b = 20; r = 5
	Slide 54: Picking r and b: The S-curve
	Slide 55: LSH Summary
	Slide 56: Summary: 3 Steps
	Slide 57: Please give us feedback  https://bit.ly/547feedback

