
Recitation sessions:
 Review of basic probability and proof 

techniques

▪ Tuesday, Jan 10, 3:30-5pm CSE2 371

 Review of linear algebra:

▪ Thursday, Jan 12, 3:30-5pm CSE2 371

For office hours – please check our website
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Given a query image patch, find similar images
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 Collect billions of images
 Determine feature vector for each image (4k dim)
 Given a query Q, find nearest neighbors FAST

Distance

Image B Feature Vector

Image Q Feature Vector

Similarity (Q,B)

0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 00 0 …

1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 00 1 …

…

…

Q

B
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Q

Nearest neighbor 

query in the 

embedding space
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 Many problems can be expressed as 
finding “similar” sets:
▪ Find near-neighbors in high-dimensional space

 Examples:
▪ Pages with similar words

▪ For duplicate detection, classification by topic

▪ Customers who purchased similar products
▪ Products with similar customer sets

▪ Images with similar features
▪ Image completion

▪ Recommendations and search
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 Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
▪ For example:

▪ An image is a long vector of pixel colors

▪ A documents might be a bag-of-words or set of shingles

 And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
▪ which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

 Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that 

are within distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔

 Note: Naïve solution would take 𝑶 𝑵𝟐

where 𝑵 is the number of data points

 MAGIC: This can be done in 𝑶 𝑵 !! How??
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 LSH is really a family of related techniques
 In general, one throws items into buckets using 

several different “hash functions”
 You examine only those pairs of items that share 

a bucket for at least one of these hash functions
 Upside: Designed correctly, only a small fraction 

of pairs are ever examined
 Downside: There are false negatives – pairs of 

similar items that never even get considered
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 Suppose we need to find near-duplicate 
documents among 𝑵 = 𝟏 million documents

▪ Naïvely, we would have to compute pairwise 
similarities for every pair of docs

▪ 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

▪ At 105 secs/day and 106 comparisons/sec, 
it would take 5 days

▪ For 𝑵 = 𝟏𝟎 million, it takes more than a year…

 Similarly, we have a dataset of 10m images, 
quickly find the most similar to query image Q
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1. Shingling: Converts a document into a set 
representation (Boolean vector)

2. Min-Hashing: Convert large sets to short 
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on 
pairs of signatures likely to be from 
similar documents

▪ Candidate pairs!

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 13



Docu-

ment

The set

of strings

of length k

that appear

in the docu-

ment

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity
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Step 1: Shingling:
Convert a document into a set

Docu-
ment

The set
of strings
of length k
that appear
in the docu-
ment



Step 1: Shingling: Converts a document into a set
 A k-shingle (or k-gram) for a document is a 

sequence of k tokens that appears in the doc

▪ Tokens can be characters, words or something else, 
depending on the application

▪ Assume tokens = characters for lecture examples

 To compress long shingles, we can hash them to 
(say) 4 bytes

 Represent a document by the set of hash 
values of its k-shingles
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 Example: k=2; document D1= abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the shingles: h(D1) = {1, 5, 7}

 k = 8, 9, or 10 is often used in practice

 Benefits of shingles:

▪ Documents that are intuitively similar will have 
many shingles in common

▪ Changing a word only affects k-shingles within 
distance k-1 from the word
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 Document D1 is represented by a set of its k-
shingles C1=S(D1)

 A natural similarity measure is the 
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|

3 in intersection.

8 in union.

Jaccard similarity

= 3/8
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Encode sets using 0/1 (bit, Boolean) vectors 
 Rows = elements (shingles)
 Columns = sets (documents)

▪ 1 in row e and column s if and 
only if e is a member of s

▪ Column similarity is the Jaccard
similarity of the corresponding 
sets (rows with value 1)

▪ Typical matrix is sparse!
 Each document is a column:

▪ Example: sim(C1 ,C2) = ?
▪ Size of intersection = 3; size of union = 6, 

Jaccard similarity (not distance) = 3/6

▪ d(C1,C2) = 1 – (Jaccard similarity) = 3/6

0101

0111

1001

1000

1010

1011

0111 

Documents

S
h
in

g
le

s
We don’t really construct the 

matrix; just imagine it exists
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 So far:
▪ Documents to Sets of shingles

▪ Represent sets as Boolean vectors in a matrix

 Next goal: Find similar columns while 
computing small signatures
▪ Similarity of columns == similarity of signatures

 Warnings:
▪ Comparing all pairs takes too much time: Job for LSH

▪ These methods can produce false negatives, and even false 
positives (if the optional check is not made)
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Step 2: Min-Hashing: Convert large sets to 
short signatures, while preserving similarity

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity



 Key idea: “hash” each column C to a small 
signature h(C), such that:
▪ sim(C1, C2) is the same as the “similarity” of 

signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:
▪ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Idea: Hash docs into buckets. Expect that 
“most” pairs of near duplicate docs hash into 
the same bucket!
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 Goal: Find a hash function h(·) such that:

▪ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on 
the similarity metric:

▪ Not all similarity metrics have a suitable 
hash function

 There is a suitable hash function for 
the Jaccard similarity: It is called Min-Hashing
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 Permute the rows of the Boolean matrix using 
some permutation 
▪ Thought experiment – not actually materialized

 Define minhash function for this permutation , 
h(C) = the number of the first (in the permuted 
order) row in which column C has value 1. 
▪ Denoted this as: h (C) = min (C)

 Apply, to all columns, several randomly chosen 
permutations  to create a signature for each 
column

 Result is a signature matrix: Columns = sets, 
Rows = minhash values for each permutation 
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Signature matrix M

1212

Input matrix 
(Shingles x Documents) 

h (C) = min (C)

1 0 1 0

1 0 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

2

3

7

6

1

5

4

1

2

3

4

5

6

7

0 1 0 1

Permutation 

1 0 1 0

1 0 0 1

1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1
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Signature matrix M

Input matrix 
(Shingles x Documents) 

h (C) = min (C)

1 0 1 0

1 0 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

4

2

1

3

6

7

5

1

2

3

4

5

6

7

Permutation 

0 1 0 1

1 0 0 1

0 1 0 1

1 0 1 0

1 0 1 0

0 1 0 1

1 0 1 0

1212

1412
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Signature matrix M

Input matrix 
(Shingles x Documents) 

h (C) = min (C)

1 0 1 0

1 0 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

3

4

7

2

6

1

5

1

2

3

4

5

6

7

Permutation 

1 0 1 0

0 1 0 1

1 0 1 0

1 0 0 0

1 0 1 0

0 1 0 1

0 1 0 1

1212

1412

2121
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 Students sometimes ask whether the minhash
value should be the original number of the 
row, or the number in the permuted order (as 
we did in our example)

 Answer: it doesn’t matter

▪ We only need to be consistent, and assure that 
two columns get the same value if and only if their 
first 1’s in the permuted order are in the same row
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 Choose a random permutation 
 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 
 Why?

▪ Let X be a doc (set of shingles), z X is a shingle

▪ Then: Pr[(z) = min((X))] = 1/|X|

▪ It is equally likely that any z X is mapped to the min element

▪ Let y be s.t. (y) = min((C1C2))

▪ Then either: (y) = min((C1))  if y  C1 , or

(y) = min((C2))  if y  C2

▪ So the prob. that both are true is the prob. y  C1  C2

▪ Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2) 

01

10

00

11

00

00 

One of the two

cols had to have

1 at position y
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 Given cols C1 and C2, rows are classified as:
C1 C2

A 1 1

B 1 0

C 0 1

D 0 0

▪ Define: a = # rows of type A, etc.
 Note: sim(C1, C2) = a/(a +b +c)
 Then: Pr[h(C1) = h(C2)] = Sim(C1, C2) 

▪ Look down the permuted cols C1 and C2 until we see a 1

▪ If it’s a type-A row, then h(C1) = h(C2)
If a type-B or type-C row, then not

01

10

00

11

00

00 
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 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Now generalize to multiple hash functions

 The similarity of two signatures is the 
fraction of the hash functions in which they 
agree

 Thus, the expected similarity of two 
signatures equals the Jaccard similarity of the 
columns or sets that the signatures represent
▪ And the longer the signatures, the smaller will be 

the expected error
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Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0

Signature matrix M

5

7

6

3

1

2

4

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation 

1212

1412

2121
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 Permuting rows even once is prohibitive
 Row hashing!

▪ Pick K = 100 hash functions hi

▪ Ordering under hi gives a random permutation  of rows!

 One-pass implementation

▪ For each column c and hash-func. hi keep a “slot” M(i, c) 
for the min-hash value of 

▪ Initialize all M(i, c) = 

▪ Scan rows looking for 1s

▪ Suppose row j has 1 in column c

▪ Then for each hi :

▪ If hi(j) < M(i, c), then M(i, c) hi(j)

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)
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for each row r do begin
for each hash function hi do

compute hi (r);
for each column c 

if c has 1 in row r
for each hash function hi do

if hi (r) < M(i, c) then

M(i, c) := hi (r);

end;

Important: so you hash r only

once per hash function, not

once per 1 in row r.
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Row C1 C2

1 1 0

2 0 1

3 1 1

4 1 0

5 0 1

h(x) = x mod 5

g(x) = (2x+1) mod 5

h(1) = 1 1 ∞

g(1) = 3 3 ∞

h(2) = 2 1 2

g(2) = 0 3 0

h(3) = 3 1 2

g(3) = 2 2 0

h(4) = 4 1 2

g(4) = 4 2 0

h(5) = 0 1 0

g(5) = 1 2 0

M(i, C1) M(i, C2)

Signature matrix M

permutation

h(x) g(x)

1     3

2     0

3     2

4     4

0     1
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Step 3: Locality Sensitive Hashing:
Focus on pairs of signatures likely to be from 
similar documents

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity



 Goal: Find documents with Jaccard similarity at 
least s (for some similarity threshold, e.g., s=0.8)

 LSH – General idea: Use a hash function that 
tells whether x and y is a candidate pair: a pair 
of elements whose similarity must be evaluated

 For Min-Hash matrices: 

▪ Hash columns of signature matrix M to many buckets

▪ Each pair of documents that hashes into the 
same bucket is a candidate pair

1212

1412

2121
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 Pick a similarity threshold s (0 < s < 1)

 Columns x and y of M are a candidate pair if 
their signatures agree on at least fraction s of 
their rows: 
M (i, x) = M (i, y) for at least frac. s values of i

▪ We expect documents x and y to have the same 
(Jaccard) similarity as their signatures

1212

1412

2121
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 Big idea: Hash columns of 
signature matrix M several times

 Arrange that (only) similar columns are 
likely to hash to the same bucket, with 
high probability

 Candidate pairs are those that hash to the 
same bucket

1212

1412

2121
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Signature matrix  M

r rows
per band

b bands

One
signature

1212

1412

2121
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 Divide matrix M into b bands of r rows

 For each band, hash its portion of each 
column to a hash table with k buckets

▪ Make k as large as possible

 Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band

 Tune b and r to catch most similar pairs, 
but few non-similar pairs
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Matrix M

r rows b bands

Buckets

Columns 2 and 6

are probably identical 

(candidate pair)

Columns 6 and 7 are

surely different.
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 There are enough buckets that columns are 
unlikely to hash to the same bucket unless 
they are identical in a particular band

 Hereafter, we assume that “same bucket” 
means “identical in that band”

 Assumption needed only to simplify analysis, 
not for correctness of algorithm
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Assume the following case:
 Suppose 100,000 columns of M (100k docs)
 Signatures of 100 integers (rows)
 Therefore, signatures take 40MB
 Goal: Find pairs of documents that 

are at least s = 0.8 similar
 Choose b = 20 bands of r = 5 integers/band

1212

1412

2121
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 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.8

▪ Since sim(C1, C2)  s, we want C1, C2 to be a candidate 
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

 Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328

 Probability C1, C2 are not identical in all of the 20 
bands: (1-0.328)20 = 0.00035 
▪ i.e., about 1/3000th of the 80%-similar column pairs 

are false negatives (we miss them)

▪ We would find 99.965% pairs of truly similar documents

1212

1412

2121

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 45



 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.3

▪ Since sim(C1, C2) < s we want C1, C2 to hash to NO 
common buckets (all bands should be different)

 Probability C1, C2 identical in one particular 
band: (0.3)5 = 0.00243

 Probability C1, C2 identical in at least 1 of 20 
bands: 1 - (1 - 0.00243)20 = 0.0474
▪ In other words, approximately 4.74% pairs of docs 

with similarity 0.3 end up becoming candidate pairs
▪ They are false positives since we will have to examine them 

(they are candidate pairs) but then it will turn out their 
similarity is below threshold s

1212

1412

2121
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 Pick:
▪ The number of Min-Hashes (rows of M) 
▪ The number of bands b, and 
▪ The number of rows r per band

to balance false positives/negatives
▪ Note, M=b*r

 Example: If we had only 10 bands of 10 rows, 
how would FP/FN change?

 Answer: The number of false positives would 
go down, but the number of false negatives 
would go up (it’s harder to become a 
candidate pair in a bucket now).

1212

1412

2121
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Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

S
im

ila
ri
ty

 t
h
re

sh
o
ld

 s

No chance
if t < s

Probability = 1 
if t > s

Say “yes” if you are 
below the red line.
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Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

01/22/2023 Tim Althoff, UW CSEP 590A: Machine Learning for Big Data, http://www.cs.washington.edu/csep590a Page 49



Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

False
positives

False
negatives

s

Say “yes” if you
are below the line.
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 Say columns C1 and C2 have similarity t
 Pick any band (r rows)

▪ Prob. that all rows in band equal = tr

▪ Prob. that some row in band unequal = 1 - tr

 Prob. that no band identical  = (1 - tr)b

 Prob. that at least 1 band identical =                  
1 - (1 - tr)b
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t r 

1: All rows
of a band
are equal

1 -

2: Some row
of a band
unequal

( )b 

3: No 
bands
identical

1 -

4: At least
one band
identical

Similarity t=sim(C1, C2) of two sets

Probability of 
sharing at least 

one bucket
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 Similarity threshold s
 Prob. that at least 1 band is identical:

s 1-(1-s^r)^b

0.2 0.006

0.3 0.047

0.4 0.186

0.5 0.470

0.6 0.802

0.7 0.975

0.8 0.9996
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 Picking r and b to get the best S-curve

▪ 50 hash-functions (r=5, b=10)
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 Tune M, b, r to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures

 Check in main memory that candidate pairs
really do have similar signatures

 Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar documents
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 Shingling: Convert documents to set representation

▪ We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short signatures, 
while preserving similarity

▪ We used similarity preserving hashing to generate 
signatures with property Pr[h(C1) = h(C2)] = sim(C1, C2)

▪ We used hashing to get around generating random 
permutations

 Locality-Sensitive Hashing: Focus on pairs of 
signatures likely to be from similar documents

▪ We used hashing to find candidate pairs of similarity  s
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