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Abstract

In recent work, machine learning methods have been applied to automatically
identify pedestrian infrastructure in online map imagery. While promising, these
methods have been limited by computational capacity and image availability. In
light of the more than 700,000 labels present in the Project Sidewalk database,
we propose the use of non-image label metadata to train neural networks to infer
accessibility label accuracy. We apply automated labeling functions to unlabelled
data, and develop an artificial neural network trained on noisy probabilistic train-
ing labels. Our approach yields precision results exceeding 90%, which further
contributes to Project Sidewalk’s overarching research agenda that is aimed at
developing fast and accurate semi-automated sidewalk assessment tools that can be
used to improve urban accessibility.

1 Introduction

Sidewalks form the backbone of cities: they can provide a safe, off-road pathway for pedestrians,
support environmentally friendly mobility, and promote local commerce, recreation, and social
interaction [1, 3]. For people with disabilities and older adults, sidewalks provide access to critical
services and first/last mile transit. And yet, unlike their road counterparts, there is a lack of high-
quality sidewalk datasets and fast, inexpensive, and reliable sidewalk assessment techniques [2,
6]—which fundamentally limits how we study and plan equitable urban infrastructure and mobility.

Project Sidewalk offers a scalable approach to accurately, efficiently, and cost-effectively locate
and evaluate sidewalks through remote crowdsourcing and online map imagery. Project Sidewalk
(https://projectsidewalk.org) is an open-source crowdsourcing platform that allows online users to
label sidewalk conditions and identify accessibility issues through engaging missions and street
scene imagery, similar to a first-person video game. For each sidewalk label, the platform collects
information including the label type, a severity score of the problem, relevant tags, and optional
descriptive text. Project Sidewalk uses gamified missions to train, engage, and sustain users and to
divide tasks. Since its 2018 pilot deployment in DC, the project team has worked with partners and
NGOs to deploy Project Sidewalk into 12 additional cities across North America, Europe and Asia
[13, 5]. As of March 2023, a total number of 10,985 users contributed to 757,730 labels. We believe
this is the largest open sidewalk accessibility dataset in existence.

In addition to labeling missions, Project Sidewalk introduces validation missions to counter the
noisy nature of crowd-sourced data. In validation missions, users review and validate previously
labeled imagery through agree, disagree, and unsure judgments. The problem with the current
validation system is that the group of crowdworkers who are mislabeling the sidewalk features are
also the crowdworkers who are validating other people’s labels. For example, one typical mistake
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is mislabeling driveways as curb ramps. While driveways are often used as a last-resort accessible
pathways, they are not ADA regulated and should not be labeled as curb ramps. Despite this, many
driveways mislabeled as curb ramps are validated as correct in the Project Sidewalk database. When
such data noise occurs at scale, it can skew analyses and study results based on Project Sidewalk data.

Previous studies have employed image-based machine learning (ML) techniques to assess sidewalk
accessibility features in Google Street View (GSV) images [14]. However, image-based approaches
have significant limitations. Firstly, it can be expensive to train image-based models, particularly deep
neural networks, which demand significant computational power and memory. Secondly, privacy
concerns and updated imagery cause many GSV images to become unavailable, currently accounting
for at least 30% of the Project Sidewalk database. In order to overcome the limitations of prior image-
based approaches, we propose the following research question: How can we utilize non-image label
metadata to train ML models to predict label accuracy?

We make the following key contributions:

1) For the first time, automated labeling functions that draw upon domain knowledge and heuristics
from urban planning are used to label the unlabelled dataset. Subsequently, we employ Program-
matic Weak Supervision (PWS) framework to generate noise-aware probabilistic training labels for
performing supervised learning.

2) We develop and fine-tune a Multilayer Perceptron (MLP) classifier utilizing the labels generated
by PWS to forecast the precision of sidewalk accessibility labels. We achieve a precision of over 90%
for 4 out of 5 main label types.

Figure 1: Project Sidewalk Labeling Interface, Label Types & Severity Rating Examples

2 Related Work

2.1 Project Sidewalk

Recent work has applied image-based deep learning models to automatically find and detect sidewalk
accessibility problems for people with varying mobility, such as cracked pavement or overgrown
vegetation, in online GSV panorama imagery [14]. The work presented a trained convolutional neural
network (CNN) that can recognize patterns in the images that indicate the presence of accessibility
problems, and has shown to significantly improve upon prior Support Vector Machine (SVM) based
automated method [7], in some cases exceeding human labeling performance. However, neural
networks are notably training-data-hungry. The noisy nature of Project Sidewalk’s crowdsourced
data undermines deep learning model training. Furthermore, the lack of publicly available datasets of
labeled sidewalk accessibility images and the uncertain availability of GSV imagery make it more
difficult to train and evaluate the proposed method. Finally, the method is based on ResNet, which
makes it dependent on high-resolution images, further limiting its use in certain situations.

To improve the accuracy of the crowd-sourced dataset of Project Sidewalk, recently, Duan et al. [4]
have studied a crowds plus machine learning (ML) technique to semi-automatically assess sidewalk
accessibility features in GSV images. The study compared the positively validated data, i.e., data
that has been voted correct by the crowd, with a larger but noisier aggregate dataset, and found
that precision and accuracy for the specific types of accessibility problems increased, however the
improvement was minimal. While the proposed assumptions are willing, questions remain about
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Figure 2: Training Dataset Distribution by Label Type and Severity

how to obtain accurate crowd-sourced datasets of sidewalk accessibility features in a cost-effective
manner.

2.2 Neural Network with Limited Data

The non-image-based variables used in this study are mainly nominal (e.g., label type) and ordinal
categorical data (e.g., severity rating, agreement count), making a Neural Network (NN) well-suited
for this problem. However, the training of a NN is limited by the amount of clean training data
available with the existing Project Sidework dataset. To address the data-hungry nature of training
these NN models, the recently proposed Programmatic Weak Supervision (PWS) framework provided
promising solutions [12, 11]. PWS is a method for training NN models with limited labeled data, it
aggregates the noisy votes of labeling functions using a set of heuristics, e.g., keywords and domain
knowledge, to produce training labels. These training labels are then used to pre-train a model for
downstream tasks. PWS reveals the probability of addressing the challenge of limited labeled data
for training a NN.

3 Data Collection

3.1 Project Sidewalk Data

The Project Sidewalk dataset comprises 757,730 labels, each of which is assigned to one of the
following types: curb ramps, missing curb ramps, sidewalk obstacles, surface problems, missing
sidewalks, occlusion, crosswalk, signal and others. Each label includes a severity assessment on a
scale of 1 to 5, with 5 being the most severe, indicating a scenario that is impassable for a wheelchair
user. Additionally, labels may include an optional open-ended description and one or more label-
specific tags. All labels are accompanied by metadata, such as the date the GSV image was captured,
the date and time the label was assigned, validation information, and geographical location (latitude
and longitude).

For the purposes of this project, we use Project Sidewalk labels from Seattle and Oradell as our
starting point. Our selection of these two locations is intentional, as they represent urban areas
with distinct characteristics: Seattle being a major city and Oradell being a suburban locale. This
deliberate choice would help us develop ML models that could effectively account for the diverse
urban compositions. In total, Project Sidewalk provides 195,543 labels for Seattle and 12,134
labels for Oradell. Figure 2 illustrates the distribution of data by label type for the two cities. The
Project Sidewalk research team validated 16,580 and 4,143 of these labels for Seattle and Oradell,
respectively, which was used as our ground truth dataset.

3.2 Open Street Map Data

OpenStreetMap (OSM) (https://www.openstreetmap.org/) contains a wide variety of geographic data,
including spatial information about roads, buildings, land use and topography. Our major use of
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OSM was to obtain spatial information about roads and sidewalks, including hierarchy, geometry and
location, in order to pair with our Project Sidewalk labels for subsequent spatial analysis.

3.3 Research Hypotheses

Drawing on the available datasets, distinct label characteristics, the nature of crowdsourcing, observa-
tions of user behavior in Project Sidewalk, and research in urban planning guidelines, we propose the
following hypotheses:

Label Type. Project Sidewalk has 5 major lable types: curb ramps, missing curb ramps, sidewalk
obstacles, surface problems, and missing sidewalks. Although most users can identify missing
sidewalks with relative ease, accurately labeling other types of features may require careful review of
the tutorial or prior knowledge. Hence, we anticipate that the accuracy of the model will vary based
on each label type.

Severity Rating. Project Sidewalk’s label severity ranges between 1-5, with 5 being the most severe,
indicating a scenario that is impassable for a wheelchair user. While 1 and 5 are easy to judge, other
severity levels tend to be more controversial.

Proximity. A label is more likely to be correct if it is placed closer to existing labels of the same type.

Optional input. When a user places a label, they will also be asked to add a description (comment)
and relevant tags. For instance, fire hydrant and pole are the tags associated with the label type
obstacle. Due to the fact that these input fields are optional, we expect that labels with such additional
information will have a higher level of accuracy.

GSV zoom/ pitch/ heading. In most cases, changing the default parameters of GSV results in a more
accurate label. For example, When a user zooms in to place a label, the label is probably correct.

Label location. The positioning of a label in relation to the sidewalk can serve as an indicator of its
accuracy. Curb ramps, for instance, should only occur at road intersections. If they fall outside a
certain radius of an intersection, they are likely to be incorrect. Similarly, if no sidewalk labels are
placed in proximity with existing sidewalk geometry, they are high likely to be false.

Land use and zoning. Previous studies [9, 8] have shown that sidewalk label quality varies with land
use. In the case of Seattle, label quality is higher in commercial areas, while people tend to mistake
driveways for curb ramps in residential areas [9].

3.4 Data Processing

Our datasets were processed according to our research hypotheses, primarily using spatial processing
techniques to measure the distance between labels and road/sidewalk geometry. We also employed
spatial clustering to determine if a label was near other existing labels. The detailed processed label
data can be found in Table 1. For the scope of this report, we will discuss only our spatial clustering
method in detail.

Spatial clustering. In order to determine whether a label is in proximity to others, we adopt the
two-step clustering approach employed in Project Sidewalk [13]: single-user clustering followed
by multi-user clustering. Firstly, we merge the raw labels provided by each user into intermediate
clusters, as some users may label a single issue from multiple angles. Secondly, we merge these
user-specific clusters to form our final cluster dataset. Both steps utilize the Vorhees clustering
algorithm along with the haversine formula to calculate distances between labels and clusters [13].

During the first step, we cluster raw labels of the same type that are within a designated distance
threshold. As some label types may naturally be close together, such as two curb ramps on a corner,
we use two different thresholds of 2 meters for curb and missing curb ramps and 7.5 meters for
other label types. These thresholds were determined through previous Project Sidewalk empirical
analysis, where clusters were calculated at different threshold levels ranging from 0 to 50 meters
(with a step size of 1 meter) and evaluated qualitatively [13]. The second step of clustering is similar,
but it uses the centroids of the first-step clusters with slightly broader thresholds of 7.5 and 10 meters,
respectively [13].
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category column type note
label_id int unique label identifier
user_id str unique user identifier
label_type str one of the seven label types
severity int severity value rated by the user
gsv_panorama_id str unique identifier for the panorama

label characteristics

geometry point cooordinates of the label in longtitiude and latitude

zoom int gsv zoom at the time of label placement
heading float gsv heading at the time of label placement
pitch float gsv pitch at the time of label placement
photographer_heading float original gsv heading at the time of panorama taken
photographer_pitch float original gsv pitch at the time of panorama taken
tag_list bool whether or not the label has an associated tag
tag_count int number of tags associated with the label

user behaviours

description bool whether or not the label has an associated comment

clustered bool whether or not the label belong to a clustercrowdsource nature cluster_count int the number of labels in the cluster

distance float distance in ft to the closest sidewalk geometry
way_type str road hierarchy labelplanning guidelines
intersection_distance float distance in ft to the closest intersection

Table 1: Dataset Features Overview

4 Methods

We aim to predict the accuracy of Project Sidewalk accessibility labels, our general pipeline is
presented in Figure 3. Our approach accomplishes the following four goals: 1) employing automated
labeling functions, informed by domain knowledge and heuristics from urban planning, to label the
unlabelled dataset, 2) employing PWS framework to generate a matrix of noise-aware probabilistic
training labels for each data point for performing supervised learning, 3) constructing an MLP
classifier to predict the precision of sidewalk accessibility labels utilizing the labels obtained from
PWS, 4) fine-tuning the MLP model using a small, clean dataset to enhance the performance on
specific label classification tasks.

Figure 3: Schematic of PWS pipeline. Labeling functions, consisting of programmatic rules and
heuristics, are employed to assign labels to the unlabeled training data. Subsequently, Label Model is
trained to estimate the accuracy of each labeling function, producing a vector of probabilistic training
labels for the training of MLP.
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4.1 Weak Supervision

Instead of manually annotating our training data, we adopted an automated approach using labeling
functions (LFs) to label our dataset. We employed the popular system, Snorkel [10], to establish a
weak supervision pipeline. Snorkel allows for the integration of domain knowledge and heuristics into
models and provides a method for estimating their accuracy and correlation in a consistent manner.
As a result, the training labels can be reweighted and combined to create high-quality labels. We find
this approach particularly suitable for our project for two reasons: first, it enables us to incorporate
domain knowledge into our models, such as urban planning guidelines; second, it allows us to train
on unlabelled data.

Assume there is a label matrix Λ, where Λi,j = λj(xi), we can encode the labeling functions using
three factor types:

ϕlabel
i,j (Λ, Y ) = 1{Λi,j ̸= ∅}

ϕaccuracy
i,j (Λ, Y ) = 1{Λi,j = yi}

ϕcorrelation
i,j,k (Λ, Y ) = 1{Λi,j = Λi,k}

See below for a set of 7 labeling algorithms we derived from our research hypothesis. For example,
Algorithm 1 is predicated on the observation that users may inadvertently mislabel driveways as curb
ramps in residential areas. According to planning guidelines, curb ramps are typically installed at
intersections only. Thus, Algorithm 1 indicates that if a curb ramp or missing curb ramp label in a
residential area falls outside a certain radius from the intersection, the label is likely to be false.

Algorithm 1 Intersection

if label ∈ CurbRamp | NoCurbRamp∧label ∈
residential ∧ label /∈ ∀road intersection then

label = false
else

♢label = false
end if

Algorithm 2 Cluster

if
∑

(∃labels ⇒ ∆(distance) < 10m) > 4
then

labels = true
else

♢labels = true
end if

Algorithm 3 Zoom

if zoom > 2 where zoom ∈ label then
label = true

else
♢label = true

end if

Algorithm 4 Severity

if severity ≥ 4 where severity ∈ label then
label = true

else
♢label = true

end if

Algorithm 5 Tag

if ∃ tag ∈ label then
label = true

else
♢label = true

end if

Algorithm 6 Description

if ∃ description ∈ label then
label = true

else
♢label = true

end if

Algorithm 7 Sidewalk Distance

if label ∈ NoSidewalk ∧ label ∈ ∀sidewalk
then

label = false
else if label ∈ Obstacle | SurfaceProblem ∧
label /∈ ∀sidewalk then

label = false
else

♢label = false
end if
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4.2 Label Model

The labeling functions used in this process are prone to noise and inaccuracies, and may overlap with
one another. The LFs abstractly provide a flexible interface label function abstraction. To address
these challenges, we applied a Label Model that is capable of denoising the signals and reducing the
need for manual tuning.

The Label Model takes the full set of labeling functions as input and applies them using the LFApplier
to obtain label matrices. However, it’s important to note that labeling functions have different
properties and should not be treated equally. In addition to varying accuracy and coverage, labeling
functions may be correlated, leading to the overrepresentation of certain signals in a simple majority-
vote-based model. To handle these complexities, we employed a more sophisticated model to combine
the outputs of the labeling functions.

LFs label instances independently, assuming knowledge of the true class label. Each labeling
function has a certain probability of labeling an instance and a probability of correctly labeling it. To
maximize the probability of the observed labels produced on our training examples occurring under
the generative model, we use Stochastic Gradient Descent to optimize the solution.

This model generates a single set of noise-aware, probabilistic training labels, which will be used to
train a Neural Network(NN) classifier for our task. The trained model hθ utilizes our probabilistic
labels Ỹ through the minimization of a noise-aware variant of the loss function L(hθ(xi), y), which
computes the expected loss relative to Y :

θ̂ = argmin
θ

m∑
i=1

Ey∼Y [L(hθ(xi), y)]

4.3 Baseline

To establish a baseline for our analysis, we create a random forest model, which is built upon the
high-dependency features selected through the methods outlined in the previous sections.

The balanced ground-truth dataset is randomly split for training and testing. Parameters are tuned
based on the average accuracy of the testing results. We conducted a grid search over three key
parameters: The maximum depth of the tree (search range: 2-20, with a step size of 1); the minimum
number of samples required to split (search range: 2-500, with a step size of 10); the maximum
number of leaf nodes (search range: 2-20, with a step size of 1). We determined the optimal values
for the depth of the tree of 3, the minimum number of samples required to split of 182, and the
maximum number of leaf nodes of 8. Finally, we trained a random forest, and selected example trees
are visualized in Figure 4. By using random forest, we aim to identify the most important predictors
for our problem and gain insights into the relationships between the features and the target variable.

Figure 4: Visualization of random forest. In each node of trees, the "value" indicates the size of two
group types. The blue color indicates the correct label group (class = y[1]), while the green color
indicates the false label group (class = y[0]).

4.4 Multilayer Perceptron

The probabilistic training labels generated by our PWS are well-suited for training complex NN
models that require a significant amount of data. Given that our dataset primarily consists of
categorical features, we have decided to employ the weak dataset from PWS as training data for a
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Multilayer Perceptron (MLP) classifier, which is particularly effective when dealing with nonlinearly
separable input variables that exhibit uncertain dependencies.

Our approach involves constructing an MLP with four layers, consisting of input, output, and two
hidden layers, with the number of neurons in the first and second hidden layers set at eight and four,
respectively. Rectified Linear Unit (ReLU) is used in the hidden layers as activation functions to
enhance convergence. The input neurons in the MLP correspond to the selected features from the
dataset, with the probabilistic labels serving as neuron weights, providing a more comprehensive
understanding of the problem.

For the output layer, we chose the sigmoid activation function to calculate the output probabilities
in the range [0,1], which is commonly used for binary classifications. We selected sigmoid over
softmax due to its faster computation time during backpropagation. This is because it doesn’t require
computing an exponential term and normalization for each neuron in the output layer. A schematic
illustration of our MLP network architecture is shown in Figure 5.

Figure 5: The MLP architecture for assessing sidewalk accessibility labels. Input is initially normal-
ized; multiple hidden layers with ReLU are then applied, where each is followed by a dropout layer;
finally, sigmoid activation function is used for the output.

To prevent overfitting, we also incorporated dropout, a regularization technique that randomly drops
out a percentage of the neurons during training, reducing their co-dependency and improving the
model’s generalization performance. The dropout rate of 0.2 is chosen to strike a balance between
reducing overfitting and maintaining an adequate level of model complexity.

4.5 Fine-tuning

Training a neural network on a small dataset can lead to overfitting, which can significantly impair
the model’s ability to generalize. To address this issue, we propose pre-training the network on a
larger dataset, such as the complete Seattle Project Sidewalk dataset. The pre-trained model with
learned relevant features from the comprehensive, but noisy dataset, can be further optimized to
enhance the performance for each label-type classification tasks by fine-tuning on a smaller dataset,
that only contains one specific label type. This is because the features of each label type are not
significantly distinct, however, each label type contains distinct chracteristics, that can be further
utilized to improve the overall performance of the model. A schematic illustration of our fine-tuning
topology is shown in Figure 6.

5 Results

5.1 Evaluation Criteria

Precision was selected as the primary evaluation metric for our models, as it is a key evaluation metric
for binary classification tasks. In our specific task, false positive predictions can have significant
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Figure 6: Fine-tuning topology. The pre-trained model on a large dataset is fine-tuned using a smaller
dataset for the specific label type, with only the last hidden layer and output layer being trainable.

consequences and incur high costs. For example, a false positive result of a label validation prediction
will cause the wrong label not being sent back to the research team for the validation process, which
may further mislead the crowdsource labeler in the future. For instance, if a label validation prediction
yields a false positive result, the incorrect label would not be sent back to the research team for
revalidation, potentially leading to confusion and errors for the crowdsourced labelers in the future,
which could ultimately undermine the quality and reliability of our dataset. Given this potential
impact, the cost of false positives is higher than that of false negatives in our application.

Furthermore, our testing dataset is imbalanced, with significantly more positive instances than
negative ones. In such cases, precision can provide a more accurate evaluation of the model’s
performance than accuracy, as accuracy can be biased towards the majority class.

5.2 Comparison Between Baseline & Label Model

The results of the Random Forest showed that the label_tag feature resulted in a Gini impurity of
0.115. We leveraged the inherent topology of the random forest, i.e., the node splitting conditions, to
tune the parameters of our labeling functions.

Below we present the label model, pre-training and fine-tuning MLP results in the full Seattle Project
Sidewalk dataset. For fair comparisons, we split the ground truth dataset equally into fine-tuning
and testing sets (50/50) using the same random state. This ensures that we have a comparable model
capacity and a consistent test dataset with the random forest baselines.

For fine-tuning, we freeze all layers except for the last hidden layer and output layer. We also reduce
the learning rate to prevent overfitting.

Results are presented in Table 2, which show that MLP is competitive with the label model in terms of
precision. However, fine-tuning MLP significantly improves performance in all criteria, as expected.

Model Curb Ramp Missing Curb Ramp No Sidewalk Surface Problem Obstacle
Random Forest 93.0% 90.8% 82.8% 88.3% 62.3%
LM 92.7% 91.5% 95.5% 90.0% 64.9%
MLP 91.9% 89.5% 84.6% 91.2% 67.7%
MLP + Fine-tuning 97.7% 90.4% 92.5% 92.4% 69.3%

Table 2: Precision Score Comparison
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5.3 Extending To Other Cities

Our study employed an identical model to analyze the Oradell dataset, and the obtained results
are presented in Table 3. As indicated below, the precision score for the obstacle category was
considerably lower for Seattle (69.3%), whereas it significantly increased for Oradell (92%). Upon
conducting tag analysis, it was revealed that the complexity of obstacle situations in Seattle may
have contributed to the observed discrepancies. Specifically, the tag information in Oradell primarily
associated obstacles with trees/vegetation (40%), whereas in Seattle, obstacles were tagged with poles,
trash/recycling can, vegetation, and parked cars in similar frequencies of around 20%. These findings
highlight that the performance of our model for obstacle labels is superior in simpler situations, and
further refinement is required to accommodate the complexities of urban environments.

City Curb Ramp Missing Curb Ramp No Sidewalk Surface Problem Obstacle

Seattle 97.7% 90.4% 92.5% 92.4% 69.3%
Oradell 97.4% 72.6% 96.8% 97.4% 92.0%

Table 3: Precision Score per Label Type per City

6 Discussion

6.1 Datasets

Extending to additional cities. The current iteration of our algorithm has only been trialed in the city
of Seattle, WA and Oradell, NJ. Our aim is to extend its application to 11 additional cities featured in
the Project Sidewalk database.

6.2 Modeling

Landuse & zoning. One of our original research hypotheses included the use of land use and zoning
information to predict label precision, but this hypothesis has not yet been implemented. Previous
studies [9, 8] have shown that sidewalk label quality varies with land use. In the case of Seattle,
label quality is higher in commercial areas, while people tend to mistake driveways for curb ramps
in residential areas [9]. In the next stage, we plan to incorporate this heuristic into our labeling
functions.

Relationships between different label types. Taking into account the interdependence between
different label types may help in developing more accurate models. Specifically, certain labels such
as surface problems and obstacles are contingent upon the presence of sidewalks. Consequently,
labels that indicate such issues in areas where missing sidewalk labels are present are likely to be
inaccurate. Similarly, curb ramp and missing curb ramp labels are mutually exclusive. Therefore,
considering such relationships may improve the precision and reliability of model predictions.

6.3 Applications

Human-AI interaction The outcomes of this project have practical implications for the design
of human-AI interaction in the Project Sidewalk platform. Specifically, the model can enhance
crowdsourced data precision by providing timely feedback when inputs are predicted to be inaccurate.
Suppose a user identifies a curb ramp and the model predicts it is likely to be false, then a message
will appear asking, "Are you sure this is a curb ramp?" As next steps, we plan to test its effectiveness
with minimally-trained crowdworkers. We hope this will improve the quality of the Project Sidewalk
data and contribute to other efforts in urban accessibility research.
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