
Improving Connectivity of Airline Networks

Nayha Auradkar
Paul G. Allen School

University of Washington
nayhaa@cs.washington.edu

Anna Goncharenko
school of beep boop

University of Washington
angonch@cs.washington.edu

Logan Milandin
Paul G. Allen School

University of Washington
mi1andin@cs.washington.edu

Sanjana Sridhar
Paul G. Allen School

University of Washington
sanjgeek@cs.washington.edu

1 Introduction

There are many regions in the world that cannot be reached efficiently by airplane from relatively
nearby regions, due to a lack of connecting airline routes. It may not always be obvious how a
given region can best utilize its air travel infrastructure to better connect itself to surrounding regions
of interest. This simple idea is the motivation for our work, where we present a system that uses
existing airline route data to recommend new routes that increase the connectivity between pairs of
weakly connected regions. Because adding airline routes can be expensive, our system also has the
ability to assess a given well-connected region and recommend unimportant or redundant routes for
removal (we reason that removing routes between regions that are already weaky connected would be
couterproductive), with the intent of freeing up the resources a region would need to add the routes
we recommend.

To make the notion of a “region" concrete yet flexible, our recommendation and deletion pipelines
accept arbitrary subsets of airports (which we will call “communities") to operate on. We formulate
both route recommendation and route removal as optimization problems over these communities, the
first optimizing a variant of average shortest path length between communities (see section 4.2.1) and
the latter optimizing this same metric within a single community. Since the number of potential new
routes (pairs of airports) is orders of magnitude larger than the number of existing routes, we use a
heuristic-based approach for the route recommendation pipeline but an exact optimization solution
for the route deletion pipeline.

While we deem it important that our pipelines work with any subset(s) of airports (since a user may
only have control over certain sets of airports, regardless of which we think are ideal to connect), we
focus on sets that are densely connected within themselves but weakly connected to each other in
developing and evaluating them. To obtain such communities, we clustered the global network of
airports and airline routes using the Louvain algorithm. To tune our heuristic for recommending new
routes, we manually selected several pairs of the resulting communities that have few existing routes
between them but are relatively nearby geographically and found hyperparameters that optimized
our shortest path metric over these. We assessed the quality of our tuned pipeline by comparing
the reductions in path lengths resulting from adding routes it recommends to reductions in path
lengths resulting from randomly selecting new routes. Our edge deletion system did not require
hyperparameter tuning, but we evaluated its selection of redundant intra-community routes similarly
by comparing the increase in path lengths resulting from removing routes it selects to the increase in
path lengths resulting from randomly removing routes.

2 Related Work

Optimizing the airline network, as least as we’re approaching it, is fundamentally a graph algorithm
problem. As such, it draws on much prior work in this area from the past several decades. Perhaps
most significant is the work of Blondel et al. [1] in developing the Louvain community detection
algorithm, an agglomerative clustering algorithm for identifying communities in large sets of data
that is now widely used. The Louvain algorithm is performed in two repeated phases that seek to
optimize a modularity function. In phase one, each node is considered to be its own community.
Then, communities are combined with neighboring communities in a way that gives the maximum
modularity until no further modularity gain can be achieved. In phase two, nodes in each community
are coalesced into “super nodes", producing a new network to pass back to phase one. The first and
second phases are then reapplied, in theory until there is only one community left but in practice until
modularity decreases by less than some threshold.

The Louvain algorithm is powerful and can operate efficiently on very large datasets. In comparison
to other clustering algorithms such as Girvan et al’s algorithm [2] or the Girvan-Newman algorithm,
Clauset et al’s algorithm [3] and simulated annealing, the Louvain algorithm is the fastest. Its time
complexity on a graph with n nodes and m edges is O(n log n) in the average case, and linear
time on sparse data. This is a significant improvement to the Girvan-Newman algorithm’s O(nm2)
runtime. Moreover, in addition to the final result of the algorithm, the hierarchical nature of the
algorithm generates intermediate solutions that are often useful in analysis of community structure.
Overall, the Louvain algorithm is attractive to us for its speed and interpetability. High quality library
implementations exist in Python [4], so we utilize it to obtain the communities that we develop and
evaluate our pipelines with.

In our exploration of other clustering alternatives, we came across a feature of one such algorithm
that inspired the evaluation metric we developed for the quality of the connection between a pair of
communities. The Girvan-Newman community detection algorithm works by deleting edges from
the graph one at a time until it’s separated into disjoint communities. It is far slower than the Louvain
algorithm, but is often seen as a “gold standard" in community detection because it avoids greedy
rules, instead performing an extensive analysis of every edge in the graph before picking the next
one to remove. The way it decides which edges to remove on each step, which are the edges that
go between the communities it eventually obtains, is what inspired our evaluation metric. It uses
the notion of “betweenness centrality" [5] which is the number of shortest paths in a graph that pass
through a given node. The idea is that for a quality partition, many shortest paths ought to pass
through the edges that go between communities and fewer shortest paths ought to pass through the
edges within a community. This led us to consider how adding routes between communities would
produce many new shortest paths that utilize that new route, and how analyzing the lengths of those
new paths compared to the length of the shortest paths before recommending an edge, we can get an
idea of how well-connected two communities are.

We also looked for work similar to what we present here. While we found systems that attempt to
optimize air travel infrastructure through path selection, taking into account properties of jet streams
and flying altitudes [6], and systems that attempt to optimize air travel to maximize profits for airlines
[7], we found none that attempt to recommend entirely new routes or the removal of existing routes
to optimize travel from the standpoint of consumers. This illustrates the novelty of our work.

3 Data Collection

3.1 Datasets

The primary dataset we utilize is the publicly available Routes dataset from OpenFlights [8], which
contains 67663 airline routes. Each route has the source and destination airport, which are of primary
interest to us, as well as the airline.

We also utilized the publicly available Airports dataset, also obtained from OpenFlights [9]. The
Airports dataset contains data regarding 7698 airports, including the city it is located in and the
latitude and longitude of the airport. Joining these datasets, we build several dataframes to extract
key information.

2

3.2 Preprocessing

We preprocess the raw datasets above extensively, both filtering out certain parts and computing new
quantities that are of interest for our system.

3.2.1 Dataset Pruning

There is a handful of routes (less than 10) in the Routes dataset with the same source and destination
airport. We’re not interested in these (as taking off and landing in the same place will not help one
travel between or within communities more effectively), so we removed them. Also, while the vast
majority of routes present are bidirectional (planes fly both ways), about 1.5% are not. Because we
use the Louvain algorithm to partition the airline network for its speed, simplicity, and interpretability,
which operates on undirected graphs, we elected to remove these routes. We recognized this early on
as an inherent limitation to our clustering method, but accepted it so we could focus our limited time
on the recommendation pipeline rather than investigating clustering algorithms for directed graphs.
Finally, we used NetworkX to find the largest connected component (LCC) of the global airline
network and removed the 28 airports and 26 routes not belonging to it from our data. The reason for
this is that our evaluation metric for recommended routes computes average shortest path lengths
between pairs of airports, so comparing its value for a graph with and without our recommendations is
only meaningful if the total number of shortest paths remains fixed. By definition, the LCC guarantees
this; the number of shortest paths is fixed at

(# airports in LCC
2

)
.

3.2.2 Adding Great-Circle Distance

Our route data does not include flight distances, either in the form of actual distance flown or distance
between the airports. We are still interested in these distances, however, so to approximate them, we
compute the great circle distance [10] between pairs of airports using their latitude and longitude.
The great circle distance, which we will denote between airports i and j as Dij is defined as the
shortest distance along the surface of a sphere, i.e. along a circumference of that sphere. Of course,
we trivially have Dij = r∆σ given a radius r and central angle ∆σ , so computing this distance
reduces to computing the central angle ∆σ from latitude ϕ and longitude λ. We will not attempt to
derive the formula here, but it’s on the Wiki page linked above:

∆σ = arccos(sinϕi sinϕj + cosλi cosλj cos |λi − λj |)

We used this formula with the average radius of earth in kilometers r = 6371 and have verified that
this distance approximation gives us an error on the order of 1% from true Earth distances. One
major benefit of computing distance ourselves is that we can obtain the distances of candidate routes
that don’t exist yet during the edge recommendation step, which is information that we wouldn’t
have if we were using true flight path distances that deviate slightly from great circle paths. There is
probably an API we could have used to get slightly more accurate Earth distances as a preprocessing
step, but this would have been prohibitively slow to invoke for the many candidate edges that are
considered during the recommendation step.

3.2.3 Partitioning Airports into Communities

To partition airports into communities used in the tuning and evaluation of our route recommendation
and removal pipelines, we used the Louvain clustering algorithm. We summarized this algorithm
above and now explain its steps in more formal detail, due to its pertinence to our system:

1. Assign each node its own community. Iterate through the nodes of the graph and assign
each to the community of one of its neighbors (or keep the current community) according
to which community change produces the highest modularity in the resulting partition.
Modularity is defined as

Q(G,S) =
1

2m

∑
s∈S

∑
i∈s

∑
j∈s

(
Aij −

kikj
2m

)
where Ai,j is the edge weight between nodes i and j and ki is the sum of weights of edges
attached to node i. Repeat this iteration process until no more community changes yield a
modularity gain (algorithm provides a theoretical guarantee of this convergence).

3

https://en.wikipedia.org/wiki/Great-circle_distance

Figure 1: The partition of airports into communities obtained from running the Louvain algorithm.
Communities are labeled with their euclidean centroids and airline routes are shown in red

2. Produce a new graph G′ from the graph G = (V,E) and partitioning of it S produced in the
most recent iteration of step 1 in the following way. For each community s ∈ S, produce a
single node vs and give it a self edge with a weight equal to the sum of edge weights within
that community:

ws =
∑

{i,j}∈E:i∈s,j∈s

Aij

Create edges between these new nodes if there were any edges between the communities
s, s′ that produced them, with a weight equal to the sum of the edge weights between those
communities:

ws,s′ =
∑

{i,j}∈E:i∈s,j∈s′

Aij

Go back to step 1 with this new graph as input.

Repeating the above two steps indefinitely will eventually yield a single super node, and by keeping
track of the agglomeration tree we can select a number of communities to output by finding the level
where the modularity stops increasing by as much (elbow point). The implementation provided in the
package we are using does this for us, simply outputting the partition corresponding to this elbow
point.

One decision we had to make here is what to use for the edge weights. We wanted this quantity to
roughly reflect how convenient it is for a passenger to travel between a pair of airports, so we took
into account route distance D as well as route multiplicity M (the number of airlines that fly it). We
reasoned that raw multiplicity scales too fast (ten airlines flying a given route does not make using it
ten times more convenient for a customer), so we settled on a weight function

w(r) =

√
Mr

Dr

Running the Louvain algorithm on our routes graph produced 38 communities, which are shown in
figure 1.

3.3 Data Exploration

The following table present some statistics of interest regarding the original datasets before and after
preprocessing:

4

Original Number of Routes 67663
Non-returning flights 949

Duplicate airline routes 29725
Routes not in LCC 46

Post-processing Number of Routes 36050
Original Number of Airports 3101

Airports in LCC 3073
The following tables present some statistics of interest regarding the communities obtained from the
Louvain algorithm in preprocessing:

Cluster Sizes:
Number of Clusters 38
Largest Cluster Size 499 (Western Europe)
Smallest Cluster Size 2 (Eastern Greenland, Eastern Caribbean Islands)

Edges Between Communities:
Mean number inter-cluster edges 1.364
Std. of number inter-cluster edges 23.908
Max number inter-cluster edges 609
Min number inter-cluster edges 0
Number disconnected clusters 2

Edges Within Communities:
Mean number intra-cluster edges 712.053
Std. of number intra-cluster edges 1865.038
Max number intra-cluster edges 10454

Community with most intra-cluster edges Western Europe
Min number intra-cluster edges 2

Community with least intra-cluster edges Eastern Caribbean Islands

4 Methodology

4.1 Mathematical Background

In addition to a working knowledge of simple euclidean geometry (to follow our calculations of great
circle distance above), readers will benefit from a basic understanding of heuristic functions and
using them to guide a search or selection process. One difference worth noting between the heuristic
function we use for route recommendation and the heuristic functions readers are likely to be familiar
with is that we are combining features multiplicatively rather than additively. In other words, given
a set of relevant features f1, ...fn for some object of interest x, the typical way to combine those
features into an overall heuristic score is

h(x) =

n∑
i=1

kifi(x)

where ki’s are tuned coefficients representing the importance assigned to each feature. The heuristic
we use, however, is of the form

h(x) =

n∏
i=1

fi(x)
ki

Our reason for using a multiplicative heuristic is to make the tuning easier when dealing with features
that differ widely in magnitude; we can assign equal significance to each feature as a first step in the
tuning process just by assigning each ki = 1 (so doubling any feature doubles the result) whereas a
linear combination would require us to find appropiately large coefficients for the smaller features
before making much use of them.

4.2 Route Recommendation

The route recommendation component of our system accepts as input two subsets of airports C1 and
C2 (a natural choice is two communities obtained by the Louvain algorithm in preprocessing, but

5

these can be any two subsets) and a desired number of route recommendations k. We then generate a
set of candidate routes

R = {(i, j) : i ∈ C1, j ∈ C2, (i, j) isn’t an existing route}

which is easily obtained by joining these two subsets of airports and filtering out any routes that
already exist between them. We compute a heuristic score (see below) for each of these remaining
candidate routes and return the top k.

4.2.1 Evaluation of Recommended Routes

In order to give us some way to compare any heuristics we might use for recommending routes, we
require some notion of a “ground truth" score for the connectivity between pairs of communities that
we can check against after adding our recommendations to the airline network. We reason that this
quantity should reflect how must distance a person must cover or how much time they must spend to
travel from airports in C1 to airports in C2 (or vice versa), and that it should be impossible to improve
upon if the communities are fully connected, i.e. if there exists a direct flight between every pair of
airports (u ∈ C1, v ∈ C2). We therefore use a version of the average shortest path length between
such pairs of airports:

score_pair(C1, C2) =
1

|C1||C2|
∑

u∈C1,v∈C1

dist(u, v)

The obvious choice here is to define dist(u, v) simply as the sum of great circle distances on the path
from u to v. However, this is inadequate because it does not place any importance on the number of
steps in the path; in reality, a path consisting of fewer flights is often far preferable to a path consisting
of more flights even if the total distance covered is more for the path consisting of fewer flights. The
reason for this, of course, is the overhead occurred during a layover; at the very least, a traveler has
to get off the plane, board another one and wait for it to take off. We therefore introduce a layover
penalty, a quantity which we assigned to routes during preprocessing for this purpose, to every flight
(besides the first) of a given path between pairs of airports. For the new routes recommended by
our pipeline, we assign a multplicity of two (this is what most routes in the existing network have,
a single airline flying the route in each direction). We will use l to refer to layover penalties. As
mentioned in the description of our preprocessing, these penalties are obtained by assigning a layover
time between 1 and 3 hours based on how frequently a route is flown (which we estimate with route
multiplicity) and then converting to the distance a typical plane could cover if it had kept flying for
that amount of time. These penalties are somewhat crude and arbitrary, but they serve our purpose of
weighting heavily against paths with more stops. We can formally express this total path “distance" in
terms of the set of all paths paths(u, v) (where a path is simply a sequence of edges/routes) between
two airports u and v:

min
p∈paths(u,v)

∑
r∈p

(Dr + lr1[u /∈ r])

Note the use of an indicator so that we only penalize stops (direct flights incur no penalty). Note also
that under this definition, the distance of a shortest path can change slightly depending whether one is
traveling from u to v or from v to u, so we instead call the above quantity dir_dist and define

dist(u, v) =
1

2
(dir_dist(u, v) + dir_dist(v, u))

4.2.2 Candidate Route Heuristic

Rather than immediately presenting the final utility heuristic we used, we will first provide the intuition
and reasoning that led us to it. We experimented with a few quantities of interest in determining a
good heuristic by which to order candidate routes. One is great circle distance; intuitively, we would
prefer to add a route between disconnected communities that is short rather than long to optimize the
evaluation metric above because if many inter-community shortest paths use this route (which is the
intent), making it shorter makes at least one segment of those paths shorter. A short connecting route
also makes it less likely that paths will have to backtrack, i.e. fly away from the intended destination
in order to get to the airport that connects the communities. With this in mind, our utility function U
should have the property

U(r) ∝ D−kD
r

6

for some tunable nonnegative exponent kD. Another quantity that turns out to be even more relevant
is the degree of the airports we’d be connecting. If we add a route between two airports u and v that
are densely connected to the rest of their respective communities, we create guaranteed three-hop
paths between the many airports connected to u and the many airports connected to v, whereas
connecting “fringe" airports only creates these three-hop paths between comparatively few pairs. To
assign value to a candidate route based on this idea, we simply add this quantity for the two airports
being connected (we informally call this sum “edge degree" and denote it with d). With this in mind,
our utility function should also have the property

U(r) ∝ dkd
r

for some tunable nonnegative exponent kd. We also investigated the possibility of using a weighted
degree, summing the multiplicities of an airport’s routes rather than just counting the number of
routes. The reasoning here is that if there are multiple airports with about the same unweighted
degree, using any of them as one end of our recommended route would create about the same number
of the efficient paths mentioned above, but the layover penalty would be worse for those with lower
multiplicity routes attached. However, our experimentation showed that the original unweighted
degree was the more informative quantity for optimizing our evaluation metric, indicating that the
number of few-hop paths created is more important than the layovers for the paths created. This leads
us to our final, ultimately rather simple heuristic:

U(r) = dkd
r D−kD

r

At this point, the savvy reader ought to ask, “why use a heuristic at all? Why not compute exactly the
candidates which optimize the evaluation metric?" The reason is that score_pair takes on the order
of a second to compute for most of the community pairs obtained from our Louvain partition. The
number of airports per community is typically at least 100, yielding on the order of 10,000 candidate
routes per community pair, so clearly we cannot afford a computation of score_pair for each of
these candidates.

4.2.3 Heuristic Tuning

To tune the heuristic above, we manually selected 15 community pairs that we considered repre-
sentative examples of what our system aims to fix. We first filtered to only communities with at
least 50 airports (several of the communities obtained from the Louvain partition are rather tiny)
and then selected the six closest pairs that have 0 connections, the three closest pairs that have 1
connection, and the two closest pairs that have each of 3, 4, and 5 connections. We reason that
community pairs with significantly more connections than this are already reasonably well connected
and not of much interest to our pipeline. We then randomly selected five of these pairs to be left out
for a test set (since we’re ultimately interested in how our heuristic performs on arbitrary pairs, not
just those used to develop it), and used the remaining ten pairs to tune our hyperparameters kd and
kD. Note that since our final heuristic only includes two of the features we experimented with, only
the ratio of hyperparameters kD

kd
(not their magnitudes) matters for the ordering of candidate routes

(since dkdD−kD =
(
dD(−kD/kd)

)kd and x < y → xk < yk,∀x, y, k > 0). So we simply fixed
kd = 1 and tried many values for kD ranging from 0 to 2 (we didn’t bother checking any higher as
performance was already dropping steeply at the upper end of this range). For each assignment to the
hyperparameters, we computed route recommendations for each of the ten community pairs. Then,
separately for pair of communities Ci and Cj , we added the recommended routes to the original
airline network G to create a modified network G′ and computed score_pair(C1, C2) over G′. We
then simply averaged these ten scores to obtain an overall score for the hyperparameter assignment
used. With this approach, the best value we settled on is kD = .3 for a final tuned heuristic of

U(r) = drD
−.3
r

It is worth noting here that the optimal kD was not exactly the same for different numbers of route
recommendations, but we found that kD = .3 was optimal for ≤ 3 route recommendations and
near-optimal for more recommendations as well.

4.3 Removing Routes

One could argue that optimizing an airline network may involve not only adding new routes, but also
removing existing redundant/unimportant routes. To support this use case, our system also includes a

7

pipeline for suggesting existing routes for removal. The communities our pipelines are designed for
are densely connected within themselves but sparsely connected to each other, so removing routes
that pass between communities would be orthogonal to our system’s intent. Thus, we focus our
attention on the problem of finding and removing redundant routes between airports that reside within
a single community. Our edge removal pipeline accepts a subset of airports C (representing a single
community) and a desired number of route removals k and returns the k routes that produce the
lowest evaluation score (see section 4.3.2) on the community subnetwork after their removal.

4.3.1 Determining Candidates for Removal

It’s possible that removing certain routes within a community could entirely disconnect components
of the airline network. Such routes certainly cannot be considered redundant or unimportant under
any reasonable definition (in fact, we would argue these are the most important to keep), so we take
special care to avoid considering these routes as candidates for removal. To this end, we obtain
a subgraph GC = (C,EC) consisting of all the nodes and edges within the community we are
removing routes from, compute a Minimum Spanning Tree (MST) of GC (with great circle distance
as weights) and only consider routes in EC for removal if they do not belong to the MST. An MST of
a graph is defined as a subset of edges EC,MST that connects all the nodes in the graph and has a
total edge weight no larger than any other spanning tree. As long as this MST for our community
remains intact, we guarantee by definition that any airport in C remains reachable from any other
airport in C. The edge removal problem thus reduces to ranking the non-essential EC \ EC,MST

edges to find the least important ones.

4.3.2 Removal Algorithm

Since the number of candidate edges for removal is quite small relative to the number of candidate new
routes in our edge recommendation pipeline, our removal algorithm can afford to exactly optimize
an evaluation metric rather than approximate an optimal solution with a heuristic. For each route
e ∈ (EC \ EC,MST), we remove e from EC to obtain a modified set of edges E′

C . We then compute
the following evaluation metric for C using only the edges in E′

C when computing dist’s:

score_single(C) =
1(|C|
2

) ∑
u∈C,v∈C:u ̸=v

dist(u, v)

Note that this is the same as the score_pair (see section 4.2.1) metric, but defined over airport pairs
within the same community rather than within different communities. Once we have computed this
score for every route e ∈ EC \ EC,MST , we simply return the k routes that produced the lowest
score.

5 Results and Analysis

5.1 Route Recommendation Pipeline

As mentioned above, we selected 15 representative pairs of communities to develop our recommenda-
tion pipeline, leaving out five of them as a test set (the rest were used to tune our recommendation
heuristic). To evaluate our tuned pipeline, we ran it on these five community pairs and computed an
overall evaluation score (averaged over the pairs, in the same way we described doing in the tuning
process) for each of one, two, three, four and five recommendations per pair. The evaluation score
is only meaningful in comparison to other evaluation scores for the same community pairs, so to
get an idea of whether our recommendations are any good, we compared these scores to what we
get when recommending edges between community pairs at random instead of using our heuristic.
The results of this test are summarized in figure 3. Evidently our recommendations produce scores
that are quite a few standard deviations below what random recommendations produce, indicating
that one would have to be quite lucky to guess routes that are as good as those recommended by our
pipeline. This gives us some amount of confidence in our pipeline’s quality. Figure 2 shows a few
examples of community pairs from this test set with our system’s recommended new routes.

8

(a) Existing routes shown in red,
recommendations in green

(b) Existing routes shown in blue, suggested
removals in red

Figure 2: Example route recommendations between community pairs (left) and removals within a
single community (right)

5.2 Route Removal Pipeline

To evaluate our removal pipeline, we selected five mid-size communities and ran our pipeline to
select one, two, three, four, and five routes for deletion from each, similar to how we evaluated
our recommendation pipeline. We averaged the score_single values over each of the communities
to obtain a single measure of performance. We also used a series of random trials here, randomly
sampling from the set of non-MST edges for each community, to obtain a comparison indicating
the quality of our removals. The results of this test are summarized in figure 3. Our route removals
appear to increase the evaluation metric by much less than the random recommendations on average,
indicating that our removals are indeed meaningful; however, we can see their scores are not nearly
as far below the error bars for the random removals as our recommendation scores were below the
random recommendations. In fact, for just one removal, our score actually overlaps the error bars.
However, this trend makes sense if we consider the sparsity of the airline network; the number of
candidate routes being considered for recommendation is always orders of magnitude larger than the
number of existing routes being considered for deletion, so one would have to be much luckier to
randomly guess the routes we recommend for the first pipeline than to randomly guess the routes
we remove for the second pipeline. This is especially true when selecting fewer routes (hence the
overlap with the error bars for just one recommendation); as we select more routes for removal, the
random removals would have to get lucky more times in order to compete with our set of removals.

6 Limitations and Future Work

We believe that our our route removal and route recommendation pipelines together provide a usable
toolset for optimizing airline networks. However, this work is far from perfect. For example, in
Section 3.2.1, we describe how we had to prune some useful data, such as removing all routes that
don’t have flights in both directions in order to use an undirected clustering algorithm. We also made
arbitrary assumptions, such as our assignment of layover penalties described in Section 4.2.1. Some
additional limitations are listed below.

6.1 Route Recommendation Pipeline

For reasons described in our preprocessing, we use only the largest connected component of the
airline network, meaning that our community partition does not contain any of the sub-networks that
are disconnected from the remainder of the airline network. This is somewhat contradictory to the
philosophy of our system because these isolated communities are in fact excellent candidates for
becoming better connected with surrounding regions. The purpose of our recommendation pipeline
is to facilitate travel from isolated communities to surrounding communities, but in order to use it for

9

(a) Route recommendation pipeline vs. random
recommendations

(b) Route removal pipeline vs. random removals

Figure 3: A comparison of the performance of our route recommendation pipeline and route removal
pipeline against random removals. We ran ten random trials for each number of recommendations
(the error bars denote one standard deviation)

one of these extremely isolated communities, one would have to manually create a set containing
those airports rather than using the communities obtained from our partition.

6.2 Route Removal Pipeline

Because we avoid the use of a heuristic in removing routes, instead electing to exactly compute the
routes which optimize our evaluation metric, the route removal pipeline tends to be significantly
slower than the recommendation pipeline (even though the number of candidate routes is much
smaller). It becomes prohibitively slow to use on communities with more than a few hundred airports
and more than a few thousand routes. In order to make the removal pipeline more universally
functional, we would need to develop a heuristic for ranking routes for removal or come up with an
evaluation metric that is faster to compute.

6.3 Future Work

Our system attempts to optimize the airline network using only data obtained from the structure of
the network itself. We attempted to leverage other relevant data such as the population around each
airport or within each region, but had issues with data cleanliness and were unable to integrate these
statistics into our pipelines in a meaningful way. We therefore recommend that future work in this
explore the use of other important data regarding the airline network, such as fuel costs, population,
relationships between regions, and information about which parties are in control of which airports
around the world.

7 Conclusion

We introduce a novel pipeline to recommend flight routes to add and remove from current airline
networks to improve the connectivity of the world and use resources more efficiently. We utilize the
Routes and Airports dataset from OpenFlights to build a graph where nodes are airports and edges
are routes. We then use the Louvain algorithm to cluster parts of the graph into communities, use our
heuristic to select top candidates routes to add, and use our evaluation metric to select top candidates
routes to remove. Using our evaluation metric, we demonstrate that for both route addition and
deletion recommendations, our algorithms perform significantly better than randomly choosing routes.
In the future, we hope to support the use of our pipelines with more isolated communities, improve
the efficiency of our algorithms, and include more data (such as population) to inform our algorithms.
We are confident, however, that the system we present here can help regions better connect to the
world.

10

8 Group Member Contributions

Nayha Auradkar: Researched Louvain algorithm and implemented clustering in code, helped with
preprocessing data, implemented heuristics for choosing communities to connect, came up with and
implemented edge removal algorithm. Wrote part of related work section, community clustering
section, the multiple route removal sections, conclusion, helped with figure generation, and edited the
final report. Worked on problem formulation, pipeline description, and route removal sections of the
presentation.

Anna Goncharenko: Researched Girvan-Newman Algorithm. Implemented code for merging with
various population datasets (omitted from final dataset), choosing pairs of communities for testing,
helped create removal recommendation algorithm, implemented evaluation function for edge removal
algorithm and helped write edge removal code, produced visuals for edge removal. Performed
exploratory data analysis on processed datasets and clustered datasets. Worked on Louvain algorithm
and final conclusion sections of the presentation, as well as editing the final video together.

Logan Milandin: Researched efficient implementations of clustering algorithms. Organized and
implemented majority of preprocessing, route recommendation pipeline, and evaluation infrastructure
including randomized trials. Documented pipeline infrastructure for ease of use. Helped design
removal pipeline. Wrote majority of introduction, methodology, results, limitations and future work
sections of this paper. Generated most figures included in this paper and our presentation.

Sanjana Sridhar: Researched betweenness centrality. Implemented code for establishing a layover
penalty, hyperparameter tuning, and associated data preprocessing steps. Wrote part of the Data
Collection section, created the citations, and edited the final report. Designed the final presentation
and made the slides for the overview, preprocessing and evaluation sections and helped make the
slides for route recommendation. Helped edit the final video.

9 References

[1] Blondel, V.D. & Guillaume, J. & Lambiotte, R & Lefebvre, E. (2008) Fast unfolding of communi-
ties in large networks. Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10,
pp. P10008.

[2] Girvan, M. & Newman, M.E.J. (2002) Community structure in social and biological networks.
Proceedings of the National Academy of Sciences vol. 99, no. 12, pp. 7821-7826.

[3] Clauset, A. & Newman, M.E.J. & Moore, C. (2004) Finding community structure in very large
networks. Phys. Rev. E vol. 70, pp. 066111.

[4] “Louvain Algorithm.” PyPI, https://pypi.org/project/louvain/.

[5] Riondato, M. & Kornaropoulos, E. (2014) Fast Approximation of Betweenness Centrality through
Sampling. Proceedings of the 7th ACM International Conference on Web Search and Data Mining
(WSDM ’14), pp. 413–422. New York, NY: Association for Computing Machinery.

[6] Ng, H.K. & Sridhar, B. & Grabbe, S. (2014) Optimizing Aircraft Trajectories with Multiple
Cruise Altitudes in the Presence of Winds. Journal of Aerospace Information Systems vol. 11, pp.
35-47.

[7] Lordan, O. & Sallan, J.M. & Escorihuela, N. & Gonzalez-Prieto, D. (2016) Robustness of airline
route networks. Physica A: Statistical Mechanics and its Applications vol. 445, pp. 18-26.

[8] OpenFlights. (2014) Route database. contentshare. https://openflights.org/data.htmlroute. Ac-
cessed Jan 26 2023.

[9] OpenFlights. (2017) Airport database. contentshare. https://openflights.org/data.htmlairport.
Accessed Jan 26 2023.

[10] “Great-Circle Distance.” Wikipedia, Wikimedia Foundation, 25 Jan. 2023,
https://en.wikipedia.org/wiki/Great-circle_distance.

11

	Introduction
	Related Work
	Data Collection
	Datasets
	Preprocessing
	Dataset Pruning
	Adding Great-Circle Distance
	Partitioning Airports into Communities

	Data Exploration

	Methodology
	Mathematical Background
	Route Recommendation
	Evaluation of Recommended Routes
	Candidate Route Heuristic
	Heuristic Tuning

	Removing Routes
	Determining Candidates for Removal
	Removal Algorithm

	Results and Analysis
	Route Recommendation Pipeline
	Route Removal Pipeline

	Limitations and Future Work
	Route Recommendation Pipeline
	Route Removal Pipeline
	Future Work

	Conclusion
	Group Member Contributions
	References

