
A Data Driven Approach to Accessible Data Science

Venkatesh Potluri
vpotluri@cs.washington.edu

Sudheesh Singanamalla
sudheesh@cs.washington.edu

Nussara Tieanklin
nussara@cs.washington.edu

Abstract

Computational notebooks have become widely accepted and standardized tools
for data science. these tools help data scientists to actively explore, analyze , and
visualize the information, and finally convey the story of their data – all while
enabling reproducibility, interactivity, and collaboration. Notebook tools like
Jupyter, Datalore and Google Colab have actively been adopted for data science
needs both in academia and industry and have been extended for use by various
scientific communities. While there has been extensive research about how data
scientists use computational notebooks, identify their pain points, and various
attempts at enabling collaborative data science practices, very little is known
about the various accessibility barriers experienced by blind or visually impaired
(BVI) people using these notebooks. The visual nature of data representation
and exploration prevents many blind and low vision or visually impaired (BVI)
software engineers, and data scientists from being able to use the tools (1) due to the
inaccessibility of the tools themselves, (2) due to the common ways in which data is
represented through these tools, and (3) mechanisms to improve their accessibility.
In this project proposal, we propose a data driven mechanism of analyzing over
10 Million Jupyter notebooks to identify accessibility challenges in published
notebooks, understand their reproducibility, and identify/propose mechanisms to
popular libraries & tools to improve the state of data science accessibility.

Introduction

Computational notebooks such as Jupyter, Google Colab, Datalore, and noteable (among others),
are widely used by data scientists as interactive mechanisms to process, understand and express
data making it easier for them to collaborate, share code, convey stories and narratives through data
visualizations and text while keeping the reproducibility of results in mind [23, 35]. The popularity
of these computational notebooks as the go-to tool for data science can be seen in the rapid increase
in published notebooks, 2.5 Million public notebooks hosted on GitHub in September 2018 [23],
increasing by 10x since 2015 [35]. More recently this dataset has increased to over 10 Million in 2020
when analyzed by JetBrains [7], a leading company building Integrated Development Environments
(IDEs). The support for Jupyter (and similar) notebooks is actively being supported in many popular
IDEs, such as VSCode, JetBrains, JupyterLab, Visual Studio, etc.., However, despite their popularity,
Jupyter notebooks pose various challenges for data scientists and was systematically studied in
the recent works by Chattopadhyay et al. [5]. Many issues such as challenges with deploying to
production, notebook hosting, and long lived history and computation time requirements which were
brought to light have recently been addressed in tools such as Google Colab, JetBrains Datalore,
Databricks Notebooks and other hosted solutions.

Despite computational notebooks being popular tools, we know very little about the accessibility
of these tools for developers and data scientists who are blind or visually impaired. For example,

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

As of writing this proposal – of the 253 citations of Rule et al., the seminal work that presents a
dataset of 2.5M notebooks [23], there is not even one mention of, or exploration of accessibility.
Additionally, very little efforts have been made by the Jupyter and data science community to address
or study the various accessibility challenges of data science tools thereby continuing the systemic
inequity and posing barriers for entry for Blind and Visually Impaired (BVI) developers’ engagement
in data science. Integrations such as CodeTalk [18] and CodeWalk [20] in IDEs allow BVI developers
to engage effectively with programming tasks. The capabilities of these integrations, however, do
not extend to meet the very nuanced accessibility needs of BVI people interested in data science.
The documentation for Jupyter – the most popular computational notebook platform – indicates
that despite the overall knowledge of the inaccessibility since 2020, as of August 2022 during the
community’s last audit, the software continues to be completely inaccessible (grade F) for BVI
developers with various challenges for colorblind users (grade C) [10]. This translates to BVI
developers not being able to perform basic tasks such as navigate cells and read the output at various
stages – which are very basic operations compared to the accessibility needs specific to datascience.
As of writing this proposal, JupyterLab continues to be inaccessible and Jupyter notebook has not yet
been analyzed with an in-depth accessibility review [34]. The use of other IDEs as a client to use
Jupyter is not a viable alternative for BVI developers due to these other IDEs themselves not being
accessible [15, 33]. This inherent inaccessibility of data science tools resulted in public requests by
the BVI community to include accessible support for these tools [15].

Our work is a data-driven take to investigate the accessibility of datascience notebooks. we analyze a
10K randomly chosen subset from the 10 Million notebook dataset by JetBrains [7] as a need finding
and systematic characterization exercise to identify various accessibility challenges in how notebooks
are published by the data science community, analyze the types of visualizations, and identify target
interventions for how the notebooks could be made more accessible. For this characterization, we:

1. Identify how data visualizations are published in Jupyter notebooks, and gain insights into
what types of visualizations notebooks contain.

2. Understand the accessibility of Jupyter notebooks, and categorize accessibility issues intro-
duced by popular themes and authoring practices by notebook users.

In summary, we hope to answer the following two overarching research questions through this work.

• RQ1: What accessibility challenges do blind or visually impaired users experience when
using computational notebook software, and notebooks published using these tools?

• RQ2: What kind of target interventions are needed to make computational notebooks
accessible to BVI consumers and notebook creators?

Through our work, we aim to contribute:

• A large scale analysis of the state of accessibility of information presented through computa-
tional notebooks.

• Targeted design interventions making computational notebooks accessible to screen reader
users.

• Recommendations for notebook software makers, data scientists and accessibility researchers
to make data and the corresponding story telling accessible.

Background

Several efforts have attempted to understand and address the access barriers experienced by BVI
software developers. Mealin and Murphy-Hill [14] published one of the first studies to understand
accessibility barriers experienced by BVI developers. They present challenges associated with using
IDEs and developing user interfaces. Many followup studies [1, 24, 32] highlight accessibility
challenges BVI developers face in seeking information critical to software development, and with
specific tasks and tools such as code navigation and command line interfaces. Researchers built
tools to address specific accessibility barriers posed by software engineering practices and evaluated
their impact on BVI developers. for example, several tools [3, 6, 17, 25] present novel, accessible
representations of code that facilitate efficient screen reader navigation. Similarly, researchers

2

contributed audio-based techniques to facilitate accessible debugging of code [17, 30, 31]. These
code navigation and debugging tools address accessibility barriers encountered when using integrated
development environments (IDEs) – which are actively used in the data science community through
tools like JupyterHub. While these tools address accessibility barriers for BVI developers to perform
some tasks, they are not sufficient for BVI developers to accessibly perform programming tasks
involving expert domains.

Web and User Interface/Experience development is one such domain that recently received atten-
tion from accessibility researchers. Kearney-Volpe et al. [11] highlight various challenges with
making web development accessible. The authors specifically note various barriers experienced
by BVI developers in making decisions related to styling and building the interface for web pages
– a programming domain extensively investigated and iteratively addressing various accessibility
challenges [12, 13, 16, 19, 28]. The solutions proposed through the investigations range from
improvements to IDEs, additional/custom software tools, and physical tactile interfaces.

A critical aspect of using computational notebooks is to create, consume, and collaborate on vi-
sual representations of data. several efforts have explored making data visualizations accessible
through auditory representations i.e. combining speech and tones [8, 26], making these auditory
representations interactive through voice commands [27], in addition to touch screen interactions
and keyboard shortcuts [2, 27]. These efforts assume BVI people as non-expert consumers of data
visualizations. Computational notebooks however, in addition to enabling consumption of data
visualizations, give BVI developers the means to produce data visualizations and enable data driven
story telling, therefore surfacing the need for these tools to offer capabilities to provide accessible
representations of these data visualizations. Very few efforts have resulted in tools and interfaces for
BVI people to author accessible data visualizations. As of today, the work by Cantrell et al. resulting
in the development of Highcharts Sonification Studio is the only open source charting library to
support accessible authoring of data sonifications [4]. Potluri et al. [21] developed a data sonification
toolkit, centered around the needs of BVI developers’ attempts at and need for understanding sensor
data and enable them to develop Internet of Things (IoT) applications.

Though these tools and efforts make data accessible to BVI developers and users, very little is known
about the applicability of these efforts when using computational notebooks.

Analysis of Jupyter Notebooks

To examine the accessibility of datascience notebooks, we begin by analyzing the JetBrains ten
million notebooks dataset [7]. Our main foci were to:

1. Setup a scalable pipeline to clean, and process the data to identify supporting data driven
evidence for accessibility.

2. Apply chart classification approaches to identify the different types of plots.

3. Develop an initial understanding of the different types of plots and plotting libraries used in
these notebooks to facilitate further analysis.

4. perform accessibility analysis on HTML exports of notebooks and compare accessibility of
notebook content and accessibility across different themes.

To focus on these investigations, and to prepare our data processing pipelines before applying it
to the large dataset, we first chose a random sample of 1000 notebooks from the 10M notebook
dataset and reported some findings for our milestone deliverable. In this final deliverable, we
include additional findings on a random sample of 10000 notebooks, and continue to prepare
our setup for further large scale analysis – whose results we hope to submit for publication to
the upcoming ASSETS conference.

Data Preprocessing

To answer our research questions, we analyzed code, output, and markdown cells of Jupyter notebooks,
and performed automated accessibility audits on html renders of notebooks. This analysis required
notebooks to be processed both in their raw iPython format, and as HTML exports.

3

Our analysis pipelines first filtered notebooks that were valid (correctly formatted) ipynb Jupyter
notebook files (identified using the nbformat library), and extracted the different types of image
outputs and stored them as base64 strings. To identify the types of charts in these images, we
converted them into Image instances and classified them using the pre-trained model released by
Jobin et al. [9]. To gain further insight into the type of libraries notebook users used to visualize data,
we filtered for notebooks written in python (both v2 and v3), that had at least 1 cell with a visual
representation of data. We performed code analysis on the code cells of these notebooks to obtain
information about the libraries that notebook authors used to visualize data, and on the presence of
subfigures. To gain insights into the accessibility of popular themes resembling IDEs that developers
use to author Jupyter notebooks, we exported the notebooks as HTML using nbconvert – the default
used by Jupyter’s export to HTML format. We exported notebooks to html using the solarized theme
(originally written for Vim and made available now by various IDEs), Darkula (for ZSH originally,
and used extensively by JetBrains), Horizon (default by VSCode), the Material Darker theme, and
Jupyter’s default dark and light themes.

We perform accessibility scans by deploying a self hosted version of the Pa11y accessibility scanning
infrastructure, and configuring the services to using both the aXe and htmlcs runners.

We ran all our analysis on a AWS p3.2xlarge machine with 8 CPU cores, a 16 GB NVidia Tesla V100
GPU and 64GB of RAM. For larger scale analysis we plan to run in the future, we hope to scale our
experimental setup to multiple machines managing spark and an underlying Hadoop file system or
using the notebooks currently stored in AWS S3 document storage. As of this report, we could only
scale to 10K notebooks on the single VM because of cost reasons. The pa11y infrastructure runs 16
concurrent Chromium tasks for scanning the accessibility of each exported notebook and incurs a
significant compute overhead since each executions spins up and destroys a sandboxed chromimum
process. We hope to address some of these scalability challenges in future iterations as we continue
to work towards a publication.

1 Results

Figure 1: Distribution of the number of plots con-
tains in each notebook.

Our results show that, of the 10000 randomly
chosen notebooks, we were able to success-
fully parse 9949 notebooks from the Amazon
S3 bucket provided by the authors of the dataset,
since 51 others were corrupted. Of these, we
identified that 9676 files (97.25%) had infor-
mation about the language of the code used in
the notebook. 94.99% of these notebooks were
written in python due to it’s popularity in data
science across people with various levels of ex-
pertise. The notebooks we consider for this re-
port contained a total of 33353 figures. Of the
9949 notebooks, we were able to convert 9836
notebooks into HTML using nbconvert and
categorized them by theme, resulting in 59016
exported Jupyter notebooks.

1.1 Characterization:
Visual Data Representations

In Figure 1 we present a cumulative distribution
of the number of figures in each notebook. At the median, a notebook contains 4 or more figures with
the 90th percentile indicating over 15 figures in a notebook. There exists a long tail of notebooks
which contain over 100 figures. We did not perform an alt-text analysis (i.e., if images have alt text)
as we are aware that there is currently no way for notebook authors to add these descriptions to plots
that are generated in programmatic ways. However, the prevalence of figures with no ability to enable
alt text, to convey data in notebooks calls for targeted efforts to make them accessible. We focused
our analysis to uncover information to help guide some of our initial explorations and future efforts
to make data visualizations accessible in the context of data science and notebooks.

4

(a) Imported modules Ranked by Usage Frequency

0 5 10 15 20 25 30
Number of Subplots by Library in Notebook

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Matplotlib
Plotly
Bokeh

(b) CDF of Number of Subplots in Figures

Figure 4

Figure 2: The visualization
types used in the random 10000
notebooks.

We classified these images by the type of visualization using the
DocFigure pre-trained model. We found that line chart was the most
common type of visualization that notebook users plotted, followed
by box plots and histograms. Figure 2 contains a histogram of the
most popular types of figures found in the analyzed notebooks. In
Figure 3 we analyze the type of output format of the images in
the Jupter notebooks and identify that png (n=32512) is dispropor-
tionately the most widely used graphical output format used by
notebook authors, followed by svg (n=255), and jpg (n=80).

We also identify the different types of modules that notebook users
imported to find the most frequently used libraries to generate plots
in the figure. We did this by implementing a parser in our pipeline
which uses an abstract syntax tree ast and extracts a named tuple
from the code matching the module and function imports using the
ast.Import, and ast.ImportFrom. Figure 4a shows a bar chart
of these imports. Matplotlib, Seaborn and IPython display were
the most popular visualization libraries used, with other libraries
such as Plotly, and Bokeh being used within the top 100 most
popular python libraries for visualizations. Identifying the set of
imports through code analysis is particularly challenging because
of the various simplification mechanisms provided by Jupyter notebooks similar to macros eg.
%matplotlib inline. While these lines of code starting with % are valid within environments
that render notebooks, they are not a part of the programming language syntax and result in errors
when the AST is used as-is. This also includes command sequences in notebook starting with ! and
documentation help features presented by the special character ?.

The information obtained from the above process helps us identify the popular libraries which are
used by data scientists to generate graphical representations of their data. Scientific papers frequently
use subfigures to report information related to experimental results together [29]. We hypothesized
the generation of the same in Jupyter notebooks during authoring and identified the number of figures
being generated as subfigures. To do this, we chose three popular graphing modules matplotlib,
plotly, and boken, and implement syntax parsers to understand more about the characteristics of
the plots being rendered. We extract the number of subfigures by identifying the number of function
calls to GridPlot, facet, column, layout, or subplots and present our results in Figure 4b. Our
results indicate that ≈90% of figures in our analysis do not have any subfigures, 2% images have 1
subfigure (2 figures), and the longer tail creating over 5 subfigures. We find that data scientists using
plotly typically (≥99% of the time) generate only one image with no subfigures, revealing that the

5

authoring practices from LATEX does not translate directly to the way in which graphics are generated
in Jupyter notebooks.

H1 H2 H3 H4 H5
None-HLevel

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
28.0
29.0
30.0
37.0
40.0
41.0
42.0
48.0
81.0

Se
qu

en
ce

Nu
m

be
r

2893 1043 570 186 34 9
526 187 117 48 7 1
158 70 34 6 4
58 41 17 5
33 26 10 1 2
22 15 8 2
19 6 10
9 12 6
16 5 2 1
12 5 4 2 1
3 5 7 1
4 4 5
6 2 4
3 4 1
2 5
4

2 3 1
4 2
1

4
2

1 3 1
2 1
1 1
1 1

1 1 1
2 1 1

1
1 1
1

1
1

1
1

1
1

500

1000

1500

2000

2500

Figure 5: First Interactive Element

1.2 Identifying First Navigable Elements

svg png jpg
Type of Images Generated

100

101

102

103

Im
ag

es
 p

er
 N

ot
eb

oo
k

N
=

96
76

Figure 3: Type of Figures Included in
Jupyter Notebooks

Screen reader users rely on basic keyboard commands for
reading and navigating web content, a basic and most fre-
quently used method of interaction when dealing with web
based interactions is to jump to the first heading level, typ-
ically described by <H1> level among the six available in
the HTML web standards (<H1...6>). To understand, au-
thoring practices, we analyze the notebooks for where their
first interactive heading element lies in the entire notebook
and present our results in the Heatmap shown in Figure 5.
Screen reader users often look for a heading level 1 to gain
context of a notebook. They often do so by pressing the “1”
(to jump to the first heading level 1) or “h” (to jump to the
first heading) key after a webpage load. We find a majority
of notebooks, have a heading level 1 in the first cell (cell
0 in Figure 5). We speculate Jupyter’s default behavior of
adding a heading level 1 in the first cell when a notebook is

created may have resulted in this accessibility advantage. While most notebooks have the highest
heading level in the first cell of the notebook, over 15% of them have a lower heading level in the
first cell. ≥7% of notebooks have H1 as their first interactive element but is only made available
after the first cell and in some extreme cases not available even until the 10th cell. This incredibly
complicates the navigational experiences resulting in a BVI data scientist skipping many relevant
cells of the notebooks. The higher number of holes in the matrix corresponding to H2 and H3 levels
indicate more data scientists skipping navigational headers structures, possibly for aesthetic reasons
exposed by CSS style sheets.

The presence of a heading in the first cell however does not guarantee that it is used in the most
effective way to provide a title to the user, and additional analysis (out of scope for this report) is
required to assess the relevance of these headings.

1.3 Tables and Interactivity

When considering the skimmability of a notebook, we also accounted for tables to be skimmable
elements. Screen reader users can jump to the first table by pressing the “t” key. Tables are currently

6

100 101 102

Number of Tables Per Notebook

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Of
 N

um
be

r o
f T

ab
le

s P
er

 N
ot

eb
oo

k

(a) CDF Of Number of Tables Per Notebook

100 101 102 103 104 105

Number of Rows/Columns in a Table

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Rows
Columns

(b) CDF Of Number of Rows and Columns in a Table

Figure 6: Tables and Interactivity

the most accessible way of representing data to a screen reader user. The presence of tables increases
the possibility for a screen reader user to quickly jump to results if the intent for looking into a
notebook is to quickly gain some insights. While the presence of links and graphics could also
be considered as the presence of skimmable elements (due to screen readers having capabilities to
navigate to them by pressing a single key), we do not account for them as they can be too specific
(in case of links) and be inaccessible (in the case of graphics) to screen reader users. While there
are 6351 notebooks which contain the first navigable element as a heading, 1143 of the notebooks
have tables as their first navigable element, while 39 notebooks have both a heading and a table made
available for navigation in the same cell.

We present the distribution of the number of tables per notebook and identify that 20% of the
notebooks have no tables in them, and at the median, notebooks contain 3 tables, while at the 90th
percentile, they contain 12 tables in a notebook as shown in Figure 6a. However, having a table by
itself doesn’t make the notebooks accessible since a lot of rows and columns can affect screen reader
navigation often resulting in users losing context or requiring too many key strokes to skip the tables
or interact with elements in the table. By analysing the typical number of rows and columns present
in these tables, we observe that a median table presents 6 rows of data in a Jupyter output but contains
over 30 columns. The row count is explained by the default behavior of data frame display functions
such as pandas.head() which are invoked when data is rendered. The number of columns however
expand heavily with tables in the 90th percentile (10% of notebooks) containing over 168 columns in
their tables as shown in Figure 6b.

1.4 Accessibility Effects of Themes

The themes used in IDEs and webpages affect accessibility especially for those with low vision and
visual impairments. Applying accessible color scheme such as high contrast themes on IDEs has been
widely adopted by these developers for both accessibility and aesthetic reasons. These different color
combinations can help highlight syntax, personal customization, and improve accessibility. However,
Jupyter notebooks exported to HTML will always be presented in the default light theme regardless of
the developers’ IDE theme. Though this standardization might be helpful in how users interact with
notebooks, the default results in notebooks being circulated in formats which might be inaccessible.
We run an accessibility tool pa11y with two open source accessibility engines aXe and HTMLCS, and
present the distribution of the number of accessibility warnings and errors in Figure 7. Our analysis
shows that for the same set of notebooks, the light theme generated performs considerable worse in
terms of accessibility and generates a heavy number of color contrast based accessibility issues. A
simple change, such as exporting the notebooks using the horizon theme which is the default view
for popular IDEs such as VSCode, we could significantly reduce the accessibility errors from 188
median errors to 26 indicating a 7.2x improvement in accessibility. The darcula theme performs the
worst with most number of errors (204 at median), while the alternative to the default (dark theme)
is 1.4x better than light theme. Therefore, we suggest Jupyter notebook engineers to provide theme

7

picker capabilities in the rendered HTML of the notebooks while defaulting to a more accessible
theme.

101 102 103

Number of Warnings / Errors related to Accessibility

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 w

ar
ni

ng
s/

er
ro

rs

darcula
dark
horizon
light
material-darker
solarized

warning
error

Figure 7: Number of Accessibility Warnings and Errors Based on Jupyter Theme

1.5 Changes to Tooling

Based on the results obtained, we chose a popular python module matplotlib, and the png output
format based on its popularity and introduced the ability for a developer to configure alternate text in
their figures when the show() or the savefig() functions are invoked. To enable this, we expose
the ability pass a metadata dictionary with the alt keyword in the function arguments. An example
usage can be seen below:

1 import matplotlib.pyplot as plt
2

3 for file_extension in ["png"]:
4 fig , ax = plt.subplots(nrows=1, ncols =1)
5 X = [1, 2, 3, 4, 5, 6, 7, 8, 9]
6 Y = [1, 2, 3, 4, 5, 6, 7, 8, 9]
7 ax.plot(X, Y, label=rf"$X=Y$ Line")
8 plt.savefig(f"dummy_image .{ file_extension}",
9 bbox_inches="tight",

10 metadata ={
11 "alt": f"This is an example description of the ALT

text for the {file_extension} image"
12 })

We update the matplotlib target backend for PNG formats, and modify the matplotlib source
code (lib/matplotlib/image.py, lib/matplotlib/backends/backend_(png|pdf).py), to
use the Exchangeable Image File Format (EXIF) and include alt text information. The Image
description information is encoded in a serialized byte format against the 0x010e (270) byte
delimiter following EXIF standards allowing HTML and other readers to programmatically read
information. This information can be obtained by the Jupyter notebook and encoded into the resulting
encoded base64 image in the notebook files. We believe, this interface is one of many ways in which
data scientists could be provided pro-active mechanisms to ensure the accessibility of their notebooks.

8

2 Future Work and Challenges

During the course of this project, We were able to develop an understanding of our dataset, and set
up a scalable working pipeline to scale our analysis to more notebooks, while helping us narrow
down on a suitable chart classification technique, and perform some initial code analysis. While
we cannot fully detail out all the results we have in this report due to space constraints, our work
towards a publication additionally focuses on: (1) more extensive code analysis approaches (color
and usage identification), (2) detail and classify the types of common accessibility errors from large
scale web accessibility scans, (3) image processing techniques to identify the types of colors used in a
figure and their accessibility (color contrast for visual disabilities such as dueteranomaly, proanomaly,
protanopia, and deuteranopia among many others), (4) identify visual crowding in images using
Feature Congestion and Subband Entropy mechanisms [22], (5) changes to the tooling for nbconvert
to support theme-pickers and accessible defaults.

The path to this progress had more hurdles than we anticipated. Broadly, these can be bucketed as
caused by (1) incompleteness of preprocessed data provided by the JetBrains team, (2) incorrect
notebook cell ordering by users resulting in default parsers considering the code samples as syntax
errors (3) limitations related to accessing computational resources to perform larger scale data analysis
and chart classification.

While the focus of the work is not reproducibility of the notebook itself, incorrect execution order
could have implications around accessibility for BVI data scientists attempting to re-execute these
notebooks as python scripts (due to their inherent accessibility).

Incomplete pre-processed data Though JetBrains provided us with a notebook and some associated
data files that helped them with their analysis of 10M notebooks, this pre-processed data
did not prove to be useful in a way that we could extend their findings without needing to
extensively reanalyze for different information. Though their analysis provides information
about the languages of notebooks, and imports in them, the data does not contain any
information to the associated code file for each entry. This required that we re-create steps
to identify the different languages used in these notebooks, and the relevant imports.

Cell ordering inconsistencies Jupyter notebooks maintain the state when a cell is executed allowing
users to execute cells in any order, as long as the execution steps are syntactically correct.
Code analysis however assumes that code is executed in a sequential order as it appears,
resulting in an invalid syntax when it is converted into an AST. While we had to drop one
notebook due to an inconsistency of this nature, we anticipate this to be a recurring issue
that we will not be able to account for.

Limitations in Computing Resources As indicated in our proposal, the size of the dataset is rela-
tively large, requiring us to have access to high capacity storage. Additionally, the chart
classification model requires an NVIDIA GPU with Cuda support to classify images with a
reasonable speed.

An additional challenge we encountered was to understand the intent of notebooks i.e. if a notebook
is a tutorial, research artifact, or intended for self exploration. This information could have helped
us gain deeper insights into where the target interventions are required for improving accessibility.
For example, if the notebooks with most accessibility issues are tutorials or homeworks, it implies a
high barrier to entry to BVI data scientists to learn the necessary skills and toolsets. Similarly, these
errors existing on research artifacts prevents BVI developers from easily building on top of existing
research which is common practice in the machine learning community.

We are excited to continue our analysis and address the challenges ahead, scale the measurements
towards 100K and look forward to submitting our results as a full publication.

References
[1] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. Interviews and observation of

blind software developers at work to understand code navigation challenges. In Proceed-
ings of the 19th International ACM SIGACCESS Conference on Computers and Accessi-
bility, ASSETS ’17, page 91–100, New York, NY, USA, 2017. Association for Comput-

9

ing Machinery. ISBN 9781450349260. doi: 10.1145/3132525.3132550. URL https:
//doi.org/10.1145/3132525.3132550.

[2] Apple. Apple developer documentation: Audio graphs, 2022. https://developer.apple.
com/documentation/accessibility/audio_graphs.

[3] Catherine M. Baker, Lauren R. Milne, and Richard E. Ladner. Structjumper: A tool to help
blind programmers navigate and understand the structure of code. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, page 3043–3052,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450331456. doi:
10.1145/2702123.2702589. URL https://doi.org/10.1145/2702123.2702589.

[4] Stanley J Cantrell, Bruce N Walker, and Øystein Moseng. Highcharts sonification studio: an
online, open-source, extensible, and accessible data sonification tool. In 26th International
Conference on Auditory Display (ICAD’21). Georgia Institute of Technology, 2021.

[5] Souti Chattopadhyay, Ishita Prasad, Austin Z Henley, Anita Sarma, and Titus Barik. What’s
wrong with computational notebooks? pain points, needs, and design opportunities. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–12,
2020.

[6] Md Ehtesham-Ul-Haque, Syed Mostofa Monsur, and Syed Masum Billah. Grid-coding: An ac-
cessible, efficient, and structured coding paradigm for blind and low-vision programmers. In Pro-
ceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, UIST
’22, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393201.
doi: 10.1145/3526113.3545620. URL https://doi.org/10.1145/3526113.3545620.

[7] Alena Guzharina. We downloaded 10,000,000 jupyter note-
books from github – this is what we learned | the jetbrains dat-
alore blog. https://blog.jetbrains.com/datalore/2020/12/17/
we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/,
12 2020. (Accessed on 01/18/2023).

[8] Leona Holloway, Cagatay Goncu, Alon Ilsar, Matthew Butler, and Kim Marriott. Infosonics:
Accessible infographics for people who are blind using sonification and voice. In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems, 2022. doi: 10.1145/
3491102.3517465.

[9] K. V. Jobin, Ajoy Mondal, and C. V. Jawahar. Docfigure: A dataset for scientific document
figure classification. In 2019 International Conference on Document Analysis and Recognition
Workshops (ICDARW), volume 1, pages 74–79, 2019. doi: 10.1109/ICDARW.2019.00018.

[10] Man From Jupyter. Accessibility issues needing addressing for wcag 2.1 compliance (as of
version 2.2.6) · issue #9399 · jupyterlab/jupyterlab. https://github.com/jupyterlab/
jupyterlab/issues/9399, 11 2020. (Accessed on 01/18/2023).

[11] Claire Kearney-Volpe and Amy Hurst. Accessible web development: Opportunities to improve
the education and practice of web development with a screen reader. ACM Trans. Access.
Comput., 14(2), July 2021. ISSN 1936-7228. doi: 10.1145/3458024. URL https://doi.
org/10.1145/3458024.

[12] Jiasheng Li, Zeyu Yan, Ebrima Haddy Jarjue, Ashrith Shetty, and Huaishu Peng. Tangiblegrid:
Tangible web layout design for blind users. In Proceedings of the 35th Annual ACM Symposium
on User Interface Software and Technology, UIST ’22, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450393201. doi: 10.1145/3526113.3545627. URL
https://doi.org/10.1145/3526113.3545627.

[13] Jingyi Li, Son Kim, Joshua A. Miele, Maneesh Agrawala, and Sean Follmer. Editing spatial
layouts through tactile templates for people with visual impairments. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 206:1–206:11,
New York, NY, USA, 2019. ACM. ISBN 978-1-4503-5970-2. doi: 10.1145/3290605.3300436.
URL http://doi.acm.org/10.1145/3290605.3300436.

10

https://doi.org/10.1145/3132525.3132550
https://doi.org/10.1145/3132525.3132550
https://developer.apple.com/documentation/accessibility/audio_graphs
https://developer.apple.com/documentation/accessibility/audio_graphs
https://doi.org/10.1145/2702123.2702589
https://doi.org/10.1145/3526113.3545620
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/
https://blog.jetbrains.com/datalore/2020/12/17/we-downloaded-10-000-000-jupyter-notebooks-from-github-this-is-what-we-learned/
https://github.com/jupyterlab/jupyterlab/issues/9399
https://github.com/jupyterlab/jupyterlab/issues/9399
https://doi.org/10.1145/3458024
https://doi.org/10.1145/3458024
https://doi.org/10.1145/3526113.3545627
http://doi.acm.org/10.1145/3290605.3300436

[14] Sean Mealin and Emerson Murphy-Hill. An exploratory study of blind software developers. In
2012 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages
71–74, Innsbruck, Austria, 2012. IEEE. doi: 10.1109/VLHCC.2012.6344485.

[15] mltony. Feature request: Accessibility support for jupyter notebooks in vscode · issue #90408
· microsoft/vscode. https://github.com/microsoft/vscode/issues/90408, 02 2020.
(Accessed on 01/18/2023).

[16] Maulishree Pandey, Sharvari Bondre, Sile O’Modhrain, and Steve Oney. Accessibility of ui
frameworks and libraries for programmers with visual impairments. In 2022 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), pages 1–10, 2022. doi:
10.1109/VL/HCC53370.2022.9833098.

[17] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y. Vidya, Manohar Swaminathan,
and Gopal Srinivasa. Codetalk: Improving programming environment accessibility for vi-
sually impaired developers. In Proceedings of the 2018 CHI Conference on Human Fac-
tors in Computing Systems, CHI ’18, page 1–11, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450356206. doi: 10.1145/3173574.3174192. URL
https://doi.org/10.1145/3173574.3174192.

[18] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y. Vidya, Manohar Swaminathan,
and Gopal Srinivasa. Codetalk: Improving programming environment accessibility for vi-
sually impaired developers. In Proceedings of the 2018 CHI Conference on Human Fac-
tors in Computing Systems, CHI ’18, page 1–11, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450356206. doi: 10.1145/3173574.3174192. URL
https://doi.org/10.1145/3173574.3174192.

[19] Venkatesh Potluri, Liang He, Christine Chen, Jon E. Froehlich, and Jennifer Mankoff. A
multi-modal approach for blind and visually impaired developers to edit webpage designs.
In The 21st International ACM SIGACCESS Conference on Computers and Accessibility,
ASSETS ’19, page 612–614, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450366762. doi: 10.1145/3308561.3354626. URL https://doi.org/10.1145/
3308561.3354626.

[20] Venkatesh Potluri, Maulishree Pandey, Andrew Begel, Michael Barnett, and Scott Reitherman.
Codewalk: Facilitating shared awareness in mixed-ability collaborative software development.
In Proceedings of the 24th International ACM SIGACCESS Conference on Computers and
Accessibility, ASSETS ’22, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450392587. doi: 10.1145/3517428.3544812. URL https://doi.org/10.1145/
3517428.3544812.

[21] Venkatesh Potluri, John Thompson, James Devine, Bongshin Lee, Nora Morsi, Peli De Halleux,
Steve Hodges, and Jennifer Mankoff. Psst: Enabling blind or visually impaired developers
to author sonifications of streaming sensor data. In Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology, UIST ’22, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450393201. doi: 10.1145/3526113.3545700.
URL https://doi.org/10.1145/3526113.3545700.

[22] Ruth Rosenholtz, Yuanzhen Li, Jonathan Mansfield, and Zhenlan Jin. Feature congestion: a
measure of display clutter. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 761–770, 2005.

[23] Adam Rule, Aurélien Tabard, and James D Hollan. Exploration and explanation in computa-
tional notebooks. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, pages 1–12, 2018.

[24] Harini Sampath, Alice Merrick, and Andrew MacVean. Accessibility of Command Line Inter-
faces, pages 1–10. Association for Computing Machinery, New York, NY, USA, 2021. ISBN
9781450380966. URL https://doi.org/10.1145/3411764.3445544.

[25] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. Accessible ast-based program-
ming for visually-impaired programmers. In Proceedings of the 50th ACM Technical Symposium

11

https://github.com/microsoft/vscode/issues/90408
https://doi.org/10.1145/3173574.3174192
https://doi.org/10.1145/3173574.3174192
https://doi.org/10.1145/3308561.3354626
https://doi.org/10.1145/3308561.3354626
https://doi.org/10.1145/3517428.3544812
https://doi.org/10.1145/3517428.3544812
https://doi.org/10.1145/3526113.3545700
https://doi.org/10.1145/3411764.3445544

on Computer Science Education, SIGCSE ’19, page 773–779, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450358903. doi: 10.1145/3287324.3287499.
URL https://doi.org/10.1145/3287324.3287499.

[26] Ather Sharif, Sanjana Shivani Chintalapati, Jacob O. Wobbrock, and Katharina Reinecke.
Understanding screen-reader users’ experiences with online data visualizations. In Jonathan
Lazar, Jinjuan Heidi Feng, and Faustina Hwang, editors, ASSETS ’21: The 23rd International
ACM SIGACCESS Conference on Computers and Accessibility, Virtual Event, USA, October
18-22, 2021, pages 14:1–14:16. ACM, 2021. doi: 10.1145/3441852.3471202. URL https:
//doi.org/10.1145/3441852.3471202.

[27] Ather Sharif, Olivia H. Wang, Alida T. Muongchan, Katharina Reinecke, and Jacob O. Wob-
brock. Voxlens: Making online data visualizations accessible with an interactive javascript plug-
in. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI
’22, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450391573.
doi: 10.1145/3491102.3517431. URL https://doi.org/10.1145/3491102.3517431.

[28] Ashrith Shetty, Ebrima Jarjue, and Huaishu Peng. Tangible web layout design for blind and
visually impaired people: An initial investigation. In Adjunct Publication of the 33rd Annual
ACM Symposium on User Interface Software and Technology, UIST ’20 Adjunct, page 37–39,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450375153. doi:
10.1145/3379350.3416178. URL https://doi.org/10.1145/3379350.3416178.

[29] Noah Siegel, Zachary Horvitz, Roie Levin, Santosh Divvala, and Ali Farhadi. Figureseer:
Parsing result-figures in research papers. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VII 14,
pages 664–680. Springer, 2016.

[30] Andreas Stefik, Roger Alexander, Robert Patterson, and Jonathan Brown. Wad: A feasibility
study using the wicked audio debugger. In 15th IEEE International Conference on Program
Comprehension (ICPC ’07), pages 69–80, 2007. doi: 10.1109/ICPC.2007.42.

[31] Andreas Stefik, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and Daniel Garcia.
Sodbeans. In 2009 IEEE 17th International Conference on Program Comprehension, pages
293–294, Vancouver, BC, Canada, 2009. IEEE.

[32] Kevin M. Storer, Harini Sampath, and M. Alice Merrick. “it’s just everything outside of the
ide that’s the problem”: Information seeking by software developers with visual impairments.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’21,
New York, NY, USA, May 2021. Association for Computing Machinery. ISBN 9781450380966.
doi: 10.1145/3411764.3445090. URL https://doi.org/10.1145/3411764.3445090.

[33] Sublime users. A request for the implementation of accessibility. issue #3392. sublimehq/sub-
lime_text, 2020. URL https://github.com/sublimehq/sublime_text/issues/3392.

[34] Jupyter Accessibility Team. Jupyter accessibility — jupyter accessibility - team compass.
https://jupyter-accessibility.readthedocs.io/en/latest/, 08 2022. (Accessed
on 01/18/2023).

[35] Jiawei Wang, Li Li, and Andreas Zeller. Better code, better sharing: on the need of analyzing
jupyter notebooks. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: New Ideas and Emerging Results, pages 53–56, 2020.

12

https://doi.org/10.1145/3287324.3287499
https://doi.org/10.1145/3441852.3471202
https://doi.org/10.1145/3441852.3471202
https://doi.org/10.1145/3491102.3517431
https://doi.org/10.1145/3379350.3416178
https://doi.org/10.1145/3411764.3445090
https://github.com/sublimehq/sublime_text/issues/3392
https://jupyter-accessibility.readthedocs.io/en/latest/

	Results
	Characterization: Visual Data Representations
	Identifying First Navigable Elements
	Tables and Interactivity
	Accessibility Effects of Themes
	Changes to Tooling

	Future Work and Challenges

