
CSE 547: Machine Learning for Big Data Winter 2023

Problem Set 4
Please read the homework submission policies here.

Assignment Submission All students should submit their assignments electronically via
GradeScope. No handwritten work will be accepted. Math formulas must be typeset using
LATEX or other word processing software that supports mathematical symbols (E.g. Google
Docs, Microsoft Word). Simply sign up on Gradescope and use the course code V84RPB.
Please use your UW NetID if possible.

For the non-coding component of the homework, you should upload a PDF rather than
submitting as images. We will use Gradescope for the submission of code as well. Please
make sure to tag each part correctly on Gradescope so it is easier for us to grade. There
will be a small point deduction for each mistagged page and for each question that includes
code. Put all the code for a single question into a single file and upload it. Only files in
text format (e.g. .txt, .py, .java) will be accepted. There will be no credit for coding
questions without submitted code on Gradescope, or for submitting it after the
deadline, so please remember to submit your code.

Coding You may use any programming languages and standard libraries, such as NumPy
and PySpark, but you may not use specialized packages and, in particular, machine learning
libraries (e.g. sklearn, TensorFlow), unless stated otherwise. Ask on the discussion board
whether specific libraries are allowed if you are unsure.

Late Day Policy All students will be given two no-questions-asked late periods, but only
one late period can be used per homework and cannot be used for project deliverables. A
late-period lasts 48 hours from the original deadline (so if an assignment is due on Thursday
at 11:59 pm, the late period goes to the Saturday at 11:59pm Pacific Time).

Academic Integrity We take academic integrity extremely seriously. We strongly encour-
age students to form study groups. Students may discuss and work on homework problems
in groups. However, each student must write down the solutions and the code independently.
In addition, each student should write down the set of people whom they interacted with.

Discussion Group (People with whom you discussed ideas used in your answers):

On-line or hardcopy documents used as part of your answers:

I acknowledge and accept the Academic Integrity clause.

(Signed)

https://courses.cs.washington.edu/courses/cse547/21sp/info.html
https://www.cs.washington.edu/academics/misconduct

CSE 547: Mining Learning for Big Data - Problem Set 4 2

1 Implementation of SVM via Gradient Descent (30

points)

Here, you will implement the soft margin SVM using different gradient descent methods as
described in the section 12.3.4 of the textbook. Our goal for this problem is to investigate
the convergence of different gradient descent methods on a sample dataset and think about
the characteristics of these different methods that lead to different performances.

To recap, given a dataset of n samples D =
{(

x(i), y(i)
)}n

i=1
, where every d-dimensional

feature vector x(i) ∈ Rd is associated with a label y(i) ∈ {−1, 1}, to estimate the parameters
θ = (w, b) of the soft margin SVM, we can minimize the loss function:

f(w, b;D) = 1

2
∥w∥22 + C

∑
(x(i),y(i))∈D

max
{
0, 1− y(i)(w · x(i) + b)

}
=

1

2
∥w∥22 + C

∑
(x(i),y(i))∈D

L(x(i), y(i);θ)

In order to minimize the function, we first obtain the gradient with respect to θ. The partial
derivative with respect to wj, the j-th entry in the vector w, is:

∂wj
f(w, b;D) = ∂f(w, b;D)

∂wj

= wj + C
∑

(x(i),y(i))∈D

∂L(x(i), y(i);θ)

∂wj

(1)

where

∂L(x(i), y(i);θ)

∂wj

=

{
0 if y(i)

(
w · x(i) + b

)
≥ 1

−y(i)x(i)
j otherwise.

and the partial derivative with respect to b is:

∂bf(w, b;D) = ∂f(w, b;D)
∂b

= C
∑

(x(i),y(i))∈D

∂L(x(i), y(i);θ)

∂b
(2)

where

∂L(x(i), y(i);θ)

∂b
=

{
0 if y(i)

(
w · x(i) + b

)
≥ 1

−y(i) otherwise.

Since the direction of the gradient is the direction of steepest ascent of the loss function,
gradient descent proceeds by iteratively taking small steps along the direction opposite to
the direction of gradient. The general framework of gradient descent is given in Algorithm
1.

CSE 547: Mining Learning for Big Data - Problem Set 4 3

Algorithm 1 General Gradient Descent

Parameters: learning rate η, batch size β.

1: Randomly shuffle the training data ▷ Only for SGD/MBGD
2: k ← 0
3: for t = 1, 2, . . . do
4: B ←

{(
x(i), y(i)

)
: βk + 1 ≤ i ≤ min{β(k + 1), n}

}
5: for j = 1, . . . , d do
6: w

(t)
j ← w

(t−1)
j − η · ∂wj

f(w(t−1), b(t−1);B) ▷ Computed by equation 1
7: end for
8: b(t) ← b(t−1) − η · ∂bf(w(t−1), b(t−1);B) ▷ Computed by equation 2
9: k ← (k + 1 mod ⌈n/β⌉)
10: if convergence criteria reached then
11: break
12: end if
13: end for

Task: Implement the SVM algorithm using the following gradient descent variants.

For all the variants use C = 100, w(0) = 0, b(0) = 0. For all other parameters, use the values
specified in the description of the variant.

Note: update the parameters w and b on iteration t using the values computed on iteration
t− 1. Do not update using values computed in the current iteration!

1. Batch Gradient Descent (BGD): When the β = n, in every iteration the algorithm
uses the entire dataset to compute the gradient and update the parameters.

As a convergence criterion for batch gradient descent we will use ∆
(t)
%loss < ε, where

∆
(t)
%loss =

|f(w(t−1), b(t−1);D)− f(w(t), b(t);D)|
f(w(t−1), b(t−1);D)

× 100 (3)

Set η = 3 · 10−7, ε = 0.25.

2. Stochastic Gradient Descent (SGD): When β = 1, in every iteration the algorithm
uses one training sample at a time to compute the gradient and update the parameters.

As a convergence criterion for stochastic gradient descent we will use ∆
(t)
loss < ε, where

∆
(t)
loss =

1
2
∆

(t−1)
loss + 1

2
∆

(t)
%loss, (4)

t is the iteration number, ∆
(t)
%loss is same as above (equation 3) and and ∆

(0)
loss = 0.

Use η = 0.0001, ε = 0.001.

3. Mini-Batch Gradient Descent (MBGD): In every iteration the algorithm uses
mini-batches of β samples to compute the gradient and update the parameters.

CSE 547: Mining Learning for Big Data - Problem Set 4 4

As a convergence criterion for mini-batch gradient descent we will use ∆
(t)
loss < ε, where

∆
(t)
loss is the same as above (equation 4) and ∆

(0)
loss = 0

Use η = 10−5, ε = 0.01 and β = 20.

Task: Run your implementation on the data set in svm/data. The data set contains the
following files :

1. features.txt : Each line contains the features (comma-separated values) of a single
sample. It has 6414 samples (rows) and 122 features (columns).

2. target.txt : Each line contains the target variable (y = -1 or 1) for the corresponding
row in features.txt.

Task: Plot the value of the loss function f(w(t), b(t);D) vs. the iteration number t starting
from t = 0. Label the plot axes. The diagram should have graphs from all the three variants
on the same plot. Report the total time (wall clock time, as opposed to the number of
iterations) each of the gradient descent variants takes to converge. What do you infer from
the plots and the time for convergence? Explain using 4-6 sentences.

Sanity Check 1: The value of the loss function at iteration number t = 0 must be around
641,400.

Sanity Check 2: Batch GD should converge in 10-300 iterations and SGD between 500-3000
iterations with Mini Batch GD somewhere in-between. However, the number of iterations
may vary greatly due to randomness. If your implementation consistently takes longer, there
might be a bug.

Sanity Check 3: The expected total run time for all 3 methods is around 5-15 minutes but
might vary depending on the implementation.

What to submit

(i) Plot of f(w(t), b(t);D) vs. the number of updates (t) (All 3 graphs should be in the
same plot). Total time taken for convergence by each of the gradient descent variants.
Interpretation of plot and convergence times.

(ii) Submit the code to Gradescope.

2 node2vec on Facebook Graph Dataset (30 points)

In this question, you will implement the 2nd-order random walk of node2vec [1], which embeds
nodes with similar network neighborhoods close in the feature space. A detailed description
of the problem setup and background is provided in the template code provided on Colab
at https://colab.research.google.com/drive/1x9TbF8w88vFc5-GaaHE-sdVa7ncMapAj.

https://colab.research.google.com/drive/1x9TbF8w88vFc5-GaaHE-sdVa7ncMapAj

CSE 547: Mining Learning for Big Data - Problem Set 4 5

Task. Implement a biased random walk to generate item sequences for Facebook pages,
and create positive and negative training samples from the sequences. Train a word2vec
(skip-gram) model to learn embeddings for graph nodes, and evaluate these embeddings
qualitatively via examining the k-nearest neighbors of selected Facebook page queries.

Dataset The dataset for this question is a page-page graph of verified Facebook sites. Nodes
represent official Facebook pages while the links are mutual likes between sites. Node fea-
tures are extracted from the site descriptions that the page owners created to summarize the
purpose of the site. This graph was collected through the Facebook Graph API in November
2017 and restricted to pages from 4 categories which are defined by Facebook. These cat-
egories are: politicians, governmental organizations, television shows and companies. The
task related to this dataset is multi-class node classification for the 4 site categories. The
dataset is available at http://snap.stanford.edu/data/facebook_large.zip

(a) [5 Points]

We provide a networkx graph constructed with the full dataset. Your task is to construct
two smaller maximal subgraphs of degree k and higher, which will be useful in keeping the
runtime of random walks and skip-gram training to a feasible range.

1. Small Graph with k = 15

2. Tiny Graph with k = 30

Hint 1: See documentation for networkx.k core

Hint 2: Tiny Graph should have 804 nodes and 24266 edges.

Report the number of nodes and edges in the Small Graph.

(b) [10 points]

Implement the Biased Random Walk of node2vec, which trades off between local and
global neighborhood views of a node u via breadth-first search (BFS) and depth-first search
(DFS) respectively. node2vec contains two parameters to interpolate between BFS and DFS:

1. Return Parameter (p): return back to previous node, i.e. immediately revisit a node
in the walk

2. In-Out Parameter (q): ratio of moving outward (DFS) vs. inward (BFS). A high q
value biases the walk to visiting local nodes, and a low q value towards distant nodes.

Recall the un-normalized random walk transition probabilities from Slide 43 in the lecture
notes:

https://www.tensorflow.org/tutorials/text/word2vec
http://snap.stanford.edu/data/facebook_large.zip
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.core.k_core.html
https://courses.cs.washington.edu/courses/cse547/23wi/slides/12-graphs2.pdf
https://courses.cs.washington.edu/courses/cse547/23wi/slides/12-graphs2.pdf

CSE 547: Mining Learning for Big Data - Problem Set 4 6

1. to return to previous node = 1/p

2. to visit a local node = 1

3. to move forward = 1/q

Instructions. Modify the provided code skeleton and implement and return a random walk
sequence with p = 1, q = 1, iters = 5 and steps = 10 on the Small Graph, where iters
is the number of iterations of random walks on all graph nodes and steps is the number of
steps taken on a single random walk starting from a specific node.

Please note that each random walk in the provided template method random walk(), which
starts from every possible node, will be a list of length = steps, including the starting node.
This corresponds to walking steps− 1 steps from the starting node. The final random walk
sequence returned will be a concatenation of num nodes random walks over iter = 5. Note
that the Tiny Graph is provided only as a sanity check to help you debug your code. Submit
the code snippet of your random walk (a single Colab cell) as a png or jpeg file.

Hint: For consistency, the choice of function to carry out random selection is important. In
next step, please use numpy.random.choice().

Sanity Check: On TinyGraph, the sequence of random walks that is returned by the provided
code skeleton method random walk() should have length = 4020.

(c) [5 points]

We will now utilize the Small Graph random walk sequence to create positive and negative
samples. We will learn embeddings for our Facebook pages by using these samples to train a
skip-gram model with negative sampling (SGNS). In simple terms, a skip-gram model tries
to predict the context words around a given center word. A more detailed overview of skip-
gram modeling can be found at this blog post [2] and the Stanford CS 224D: Deep Learning
for NLP Lecture Notes, though it is not required for this question. You will be provided
template code to create positive and negative training examples from the random walk
sequence, initialize the dataset and keras model, and plot the training loss. You will also be
provided hyperparameters to train the model.

Report:

1. The training loss plot of your skip-gram model

2. The percentage drop in training loss after 10 epochs

Sanity Check: the output of generate examples() in the template code on Small Graph
should be:

Targets shape: (2498691,)

https://numpy.org/doc/stable/reference/random/generated/numpy.random.choice.html
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://cs224d.stanford.edu/lecture_notes/notes1.pdf

CSE 547: Mining Learning for Big Data - Problem Set 4 7

Contexts shape: (2498691,)

Labels shape: (2498691,)

Weights shape: (2498691,)

Hint: The total runtime of skip-gram training should be under 10 minutes on Small Graph ,
and under 2 minutes on Tiny Graph.

(d) [10 Points]

Analyze the embeddings learnt with the random walk and skip-gram model by computing
the cosine similarity of given Facebook page queries with all other embeddings learnt on the
Small Graph. You will be required to write this code within the provided skeleton. For
those unfamiliar with keras, it is recommended to examine the template code provided in
create model() alongside the visualization generated in keras. utils .plot model() to observe
where item embeddings are available.

Report the 5-nearest-neighbors for each of the following four nodes: “Glee”, “United States
Air Force”, “NASA’s Curiosity Mars Rover”, and “Barack Obama”.

Hint 1: Don’t forget to L2 normalize your embeddings with Numpy or TensorFlow! This
essentially reduces cosine similarity to a maximum inner product search (MIPS).

Hint 2: see documentation for tf.math.top k

Sanity Check 1: On Tiny Graph, The L2 norm of the embeddings ||embeddings||2 = 44.6592

Sanity Check 2: On Tiny Graph, the 5-nearest neighbors for the query “Brooklyn Nine
Nine” are “You The Jury”, “MasterChef ”, “Houdini & Doyle”, “Famous”, “The Exorcist
FOX ”.

What to submit

(i) Upload your code to Gradescope as an .ipynb file. The code is to ensure that each
person has written their own solution. We may choose to run your code to validate
your solution but you do not have to worry about implementation details.

(ii) Report the number of nodes and edges after constructing the Small Graph.

(iii) Submit the code snippet of your random walk sequence generation (single Colab cell
provided in the template code).

(iv) Include the plot of skip-gram training accuracy and percentage drop after 10 epochs
with embeddings learnt on Small Graph.

(v) Include in your writeup the top 5 similar Facebook pages of the queries in part (d)
with embeddings learnt on Small Graph.

https://en.wikipedia.org/wiki/Cosine_similarity
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
https://www.tensorflow.org/api_docs/python/tf/math/l2_normalize
https://en.wikipedia.org/wiki/Maximum_inner-product_search
https://www.tensorflow.org/api_docs/python/tf/math/top_k

CSE 547: Mining Learning for Big Data - Problem Set 4 8

3 Data Streams (45 points)

In this question, we are going to follow an algorithm for determining the approximate fre-
quencies of the unique items in a data stream. We will specifically investigate how we can
get a feasible approximation that uses less space than the naive solution but is still a good
estimate of the actual frequencies. We will also experiment with a real stream dataset to
empirically investigate our claims.

You are an astronomer at the Space Telescope Science Institute in Baltimore, Maryland, in
charge of the petabytes of imaging data they recently obtained. According to the news report
linked in the previous sentence, “...The amount of imaging data is equivalent to two billion
selfies, or 30,000 times the total text content of Wikipedia. The catalog data is 15 times the
volume of the Library of Congress.”

This data stream has images of everything out there in the universe, ranging from stars,
galaxies, asteroids, to all kinds of awesome exploding/moving objects. Your task is to de-
termine the approximate frequencies of occurrences of different (unique) items in this data
stream.

We now introduce our notation for this problem. Let S = ⟨a1, a2, . . . , at⟩ be the given
data stream of length t. Let us denote the items in this data stream as being from the set
{1, 2, . . . , n}. For any 1 ≤ i ≤ n, we denote F [i] to be the number of times i has appeared
in S. Our goal is then to have good approximations of the values F [i] for all 1 ≤ i ≤ n at
all times.

The näıve way to do this is to just keep the counts for each item 1 ≤ i ≤ n separately.
However, this will require O(n) space which, in our application, is clearly infeasible. We
shall see that it is possible to approximate these counts using a much smaller amount of
space. To do so, we consider the algorithm explained below.

Algorithm. The algorithm has two parameters δ and ε > 0, and
⌈
log 1

δ

⌉
independent hash

functions
hj : {1, 2, . . . , n} → {1, 2, . . . ,

⌈e
ε

⌉
}.

Note that in this problem, log denotes the natural logarithm. For each bucket b of each hash
function j, the algorithm has a counter cj,b that is initialized to zero.

As each element i arrives in the data stream, it is hashed by each of the hash functions, and
the count for the j-th hash function cj,hj(i) is incremented by 1.

Note: You can assume that the hash functions are independent and totally random (see:
https://courses.csail.mit.edu/6.851/spring12/scribe/lec10.pdf).

For any 1 ≤ i ≤ n, we define F̃ [i] = minj{cj,hj(i)} as our estimate of F [i].

Task. The goal is to show that F̃ [i] as defined above provides a good estimate of F [i].

https://phys.org/news/2019-01-world-largest-digital-sky-survey.html
https://courses.csail.mit.edu/6.851/spring12/scribe/lec10.pdf

CSE 547: Mining Learning for Big Data - Problem Set 4 9

(a) [4 Points]

What is the memory usage of this algorithm (in Big-O notation)? Give a one or two line
justification for the value you provide.

(b) [5 Points]

Justify that for any 1 ≤ i ≤ n:
F̃ [i] ≥ F [i].

Hint: You can show that the inequality holds for F̃ [i] by showing that it holds for the
minimum j or that it holds for all j where cj,hj(i) denotes the count for the j-th hash function.

(c) [12 Points]

Prove that for any 1 ≤ i ≤ n and 1 ≤ j ≤ ⌈log(1
δ
)⌉:

E
[
cj,hj(i)

]
≤ F [i] +

ε

e
t,

where, as mentioned, t is the length of the stream.

(d) [12 Points]

Prove that:
P
[
F̃ [i] ≤ F [i] + εt

]
≥ 1− δ.

Hint 1: Use Markov inequality and the independence of hash functions.

Hint 2: Use the fact that F̃ [i] = minj{cj,hj(i)} and thus F̃ [i] ≤ cj,hj(i)∀j.

Based on the proofs in parts (b) and (d), it can be inferred that F̃ [i] is a good approximation
of F [i] for any item i such that F [i] is not very small (compared to t). In many applications
(e.g., when the values F [i] have a heavy-tail distribution), we are indeed only interested in
approximating the frequencies for items which are not too infrequent. We next consider one
such application.

(e) [12 Points]

Warning. This implementation question requires substantial computation time. Python
implementation is reported to take 15min - 1 hour. Therefore, we advise you to start early.

CSE 547: Mining Learning for Big Data - Problem Set 4 10

Dataset. The dataset in streams/data contains the following files:

1. words stream.txt Each line of this file is a number, corresponding to the ID of a word
in the stream.

2. counts.txt Each line is a pair of numbers separated by a tab. The first number is
an ID of a word and the second number is its associated exact frequency count in the
stream.

3. words stream tiny.txt and counts tiny.txt are smaller versions of the dataset
above that you can use for debugging your implementation.

4. hash params.txt Each line is a pair of numbers separated by a tab, corresponding
to parameters a and b which you may use to define your own hash functions (See
explanation below).

Instructions. Implement the aforementioned algorithm and run it on the dataset with
parameters δ = e−5, ε = e × 10−4. (Note: with this choice of δ you will be using 5 hash
functions - the 5 pairs (a, b) that you’ll need for the hash functions are in hash params.txt).

Then for each distinct word i in the dataset, compute the relative error Er[i] =
F̃ [i]−F [i]

F [i]
and

plot these values as a function of the exact word frequency F [i]
t
. You do not have to

implement the algorithm in Spark.

The plot should be a scatter plot and should use a logarithm scale both for the x and the y
axes, and there should be ticks to allow reading the powers of 10 (e.g. 10−1, 100, 101 etc...).
The plot should have a title, as well as the x and y axis labels. The exact frequencies F [i]
should be read from the counts file. Note that words of low frequency can have a very large
relative error. That is not a bug in your implementation, but just a consequence of the
bound we proved in question (a).

Answer the following question by reading values from your plot: What is an approximate
condition on a word frequency in the document to have a relative error below 1 = 100 ?

Hash functions. You may use the following hash function (see example pseudocode),
with p = 123457, a and b values provided in the hash params file and n buckets (which is
equivalent to

⌈
e
ε

⌉
) chosen according to the specification of the algorithm. In the provided

file, each line gives you a, b values to create one hash function.

Returns hash(x) for hash function given by parameters a, b, p and n_buckets

def hash_fun(a, b, p, n_buckets, x) {

y = x [modulo] p

hash_val = (a*y + b) [modulo] p

return hash_val [modulo] n_buckets

}

CSE 547: Mining Learning for Big Data - Problem Set 4 11

Note: This hash function implementation produces outputs of value from 0 to (n buckets−
1), which is different from our specification in the Algorithm part. You can either keep
the range as {0, ..., n buckets− 1}, or add 1 to the hash result so the value range becomes
{1, ..., n buckets}, as long as you stay consistent within your implementation.

Sanity Check 1: On the tiny dataset, the actual word frequencies should be in range around
10−7 to 10−2 and the corresponding relative errors should be in range around 10−5 to 105.
Sanity Check 2: On the tiny dataset, words with frequency roughly in range 10−4 to 10−5

have a relative error below 10−1.

What to submit

(i) Expression for the memory usage of the algorithm and justification. [part (a)]

(ii) Proofs for parts (b)-(d).

(iii) Log-log plot of the relative error as a function of the frequency. An approximate
condition on a word frequency to have a relative error below 1. [part (e)]

(iv) Submit the code to Gradescope. [part (e)]

References

[1] Grover, A., and Leskovec, J. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining (2016), pp. 855–864.

[2] McCormick, C. Word2vec tutorial - the skip-gram model. retrieved from http://www.

mccormickml.com.

http://www.mccormickml.com
http://www.mccormickml.com

	Implementation of SVM via Gradient Descent (30 points)
	node2vec on Facebook Graph Dataset (30 points)
	Data Streams (45 points)

