
CSE 547: Machine Learning for Big Data Winter 2023

Problem Set 3
Please read the homework submission policies.

Assignment Submission All students should submit their assignments electronically via
GradeScope. No handwritten work will be accepted. Math formulas must be typeset using
LATEX or other word processing software that supports mathematical symbols (E.g. Google
Docs, Microsoft Word). Simply sign up on Gradescope and use the course code V84RPB.
Please use your UW NetID if possible.

For the non-coding component of the homework, you should upload a PDF rather than
submitting as images. We will use Gradescope for the submission of code as well. Please
make sure to tag each part correctly on Gradescope so it is easier for us to grade. There
will be a small point deduction for each mistagged page and for each question that includes
code. Put all the code for a single question into a single file and upload it. Only files in
text format (e.g. .txt, .py, .java) will be accepted. There will be no credit for coding
questions without submitted code on Gradescope, or for submitting it after the
deadline, so please remember to submit your code.

Coding You may use any programming languages and standard libraries, such as NumPy
and PySpark, but you may not use specialized packages and, in particular, machine learning
libraries (e.g. sklearn, TensorFlow), unless stated otherwise. Ask on the discussion board
whether specific libraries are allowed if you are unsure.

Late Day Policy All students will be given two no-questions-asked late periods, but only
one late period can be used per homework and cannot be used for project deliverables. A
late-period lasts 48 hours from the original deadline (so if an assignment is due on Thursday
at 11:59 pm, the late period goes to the Saturday at 11:59pm Pacific Time).

Academic Integrity We take academic integrity extremely seriously. We strongly encour-
age students to form study groups. Students may discuss and work on homework problems
in groups. However, each student must write down the solutions and the code independently.
In addition, each student should write down the set of people whom they interacted with.

Discussion Group (People with whom you discussed ideas used in your answers):

On-line or hardcopy documents used as part of your answers:

I acknowledge and accept the Academic Integrity clause.

(Signed)

https://courses.cs.washington.edu/courses/cse547/21sp/faq.html
https://www.cs.washington.edu/academics/misconduct

CSE 547 - Machine Learning for Big Data - Problem Set 3 2

1 Dead Ends in PageRank Computations (25 points)

We learned about PageRank in lecture which is an algorithm for ranking webpages. In this
problem, we are going to focus on dead ends and examine how they affect the PageRank
computations.

Suppose we denote the matrix of the Internet as the n-by-n matrix M , where n is the number
of webpages. Suppose there are k links out of the node (webpage) j, and

Mij =

{
1/k if there is a link from j to i
0 otherwise

For a webpage j that is a dead end (i.e., one having zero links out), the column j is all
zeroes.

Let r = [r1, r2, . . . , rn]
⊤ be an estimate of the PageRank vector. In one iteration of the

PageRank algorithm, we compute the next estimate r′ of the PageRank as: r′ = Mr.

Given any PageRank estimate vector r, define w(r) =
∑n

i=1 ri.

(a) [6pts] Suppose the Web has no dead ends. Prove that w(r′) = w(r).

(b) [9pts] Suppose there are still no dead ends, but we use a teleportation probability (i.e.,
the probability of jumping to some random page) of 1 − β, where 0 < β < 1. The
expression for the next estimate of ri becomes r′i = β

∑n
j=1Mijrj + (1 − β)/n. Under

what conditions will w(r′) = w(r)? Prove your conclusion.

Hint: The conditions required for the equality are related to w(r).

(c) [10pts] Now, let us assume a teleportation probability of 1 − β in addition to the fact
that there are one or more dead ends. Call a node “dead” if it is a dead end and “live”
if not. Assume w(r) = 1. At each iteration, when not teleporting, each live node j
distributes βrj PageRank uniformly across each of the nodes it links to, and each dead
node j distributes rj/n PageRank to all the nodes.

Write the equation for r′i in terms of β, M , r, n, and D (where D is the set of dead
nodes). Then, prove that w(r′) = 1.

What to submit

(i) Proof [1(a)]

(ii) Condition for w(r′) = w(r) and Proof [1(b)]

(iii) Equation for r′i and Proof [1(c)]

CSE 547 - Machine Learning for Big Data - Problem Set 3 3

2 Implementing PageRank and HITS (30 points)

In this problem, you will learn how to implement the PageRank and HITS algorithms in
Spark. You will be experimenting with a small randomly generated graph (assume that the
graph has no dead-ends) provided in graph-full.txt.

There are 100 nodes (n = 100) in the small graph and 1000 nodes (n = 1000) in the full
graph, and m = 8192 edges, 1000 of which form a directed cycle (through all the nodes)
which ensures that the graph is connected. It is easy to see that the existence of such a cycle
ensures that there are no dead ends in the graph. There may be multiple directed edges
between a pair of nodes, and your solution should treat them as the same edge. The first
column in graph-full.txt refers to the source node, and the second column refers to the
destination node.

Implementation hint: You may choose to store the PageRank vector r either in memory or
as an RDD. Only the matrix of links is too large to store in memory.

(a) PageRank Implementation [15 points]

Assume the directed graph G = (V,E) has n nodes (numbered 1, 2, . . . , n) and m edges, all
nodes have positive out-degree, and M = [Mji]n×n is a an n × n matrix as defined in class
such that for any i, j ∈ [1, n]:

Mji =

{ 1
deg(i)

if (i → j) ∈ E,

0 otherwise.

Here, deg(i) is the number of outgoing edges of node i in G. If there are multiple edges
in the same direction between two nodes, treat them as a single edge. By the definition of
PageRank, assuming 1−β to be the teleport probability, and denoting the PageRank vector
by the column vector r, we have the following equation:

r =
1− β

n
1+ βMr, (1)

where 1 is the n× 1 vector with all entries equal to 1.

Based on this equation, the iterative procedure to compute PageRank works as follows:

1. Initialize: r(0) = 1
n
1

2. For i from 1 to k, iterate: r(i) = 1−β
n
1+ βMr(i−1)

Run the aforementioned iterative process in Spark for 40 iterations (assuming β = 0.8) and
(the estimate) of the PageRank vector r. In particular, you don’t have to implement the
blocking algorithm from lecture. The matrix M can be large and should be processed as an
RDD in your solution. Compute the following:

CSE 547 - Machine Learning for Big Data - Problem Set 3 4

• List the top 5 node ids with the highest PageRank scores.

• List the bottom 5 node ids with the lowest PageRank scores.

For a sanity check, we have provided a smaller dataset (graph-small.txt). In that dataset,
the top node has id 53 with value 0.036.

(b) HITS Implementation [15 points]

Assume that the directed graph G = (V,E) has n nodes (numbered 1, 2, . . . , n) and m edges,
all nodes have non-negative out-degree, and L = [Lij]n×n is a an n× n matrix referred to as
the link matrix such that for any i, j ∈ [1, n]:

Lij =

{
1 if (i → j) ∈ E,
0 otherwise.

Given the link matrix L and scaling factors λ and µ, the hubbiness vector h and the authority
vector a can be expressed using the equations:

h = λLa, a = µLTh (2)

where 1 is the n× 1 vector with all entries equal to 1.

Assume that λ = 1, µ = 1. Then the iterative method to compute h and a is as follows:

1. Initialize h with a column vector (of size n× 1) of all 1’s.

2. Compute a = LTh and scale so that the largest value in the vector a has value 1.

3. Compute h = La and scale so that the largest value in the vector h has value 1.

4. Go to step 2.

Repeat the iterative process for 40 iterations, and obtain the hubbiness and authority scores
of all the nodes (pages). The link matrix L can be large and should be processed as an RDD.
Compute the following:

• List the 5 node ids with the highest hubbiness score.

• List the 5 node ids with the lowest hubbiness score.

• List the 5 node ids with the highest authority score.

• List the 5 node ids with the lowest authority score.

For a sanity check, you should confirm that graph-small.txt has highest hubbiness node
id 59 with value 1 and highest authority node id 66 with value 1.

CSE 547 - Machine Learning for Big Data - Problem Set 3 5

What to submit

(i) List 5 node ids with the highest and least PageRank scores [2(a)]

(ii) List 5 node ids with the highest and least hubbiness and authority scores [2(b)]

(iii) Upload all the code to the snap submission site [2(a) & 2(b)]

3 Spectral Clustering (45 points)

We saw in lecture several methods for partitioning different types of graphs. In this problem,
we explore (yet another) such partitioning method called “spectral clustering”. The name
derives from the fact that it uses the spectrum of certain matrices (that is, the eigenvalues and
eigenvectors) derived from the graph and the key idea is to minimize cut. Mathematically,
cut minimization is closely related to modularity maximization. We could also use the
spectral clustering algorithm to solve the modularity maximization problem [1].

Our goals in this problem are to derive a simple algorithm for spectral clustering, apply it
on a dataset, and interpret the clustering results.

Let us first fix the notation we’ll use in this problem.

• Let G = (V,E) be a simple (that is, no self- or multi-edges), undirected, connected
graph with n = |V | and m = |E|.

• We use the notation {i, j} ∈ E to denote that the nodes i and j are connected via an
edge (note that since this is an undirected graph, we do not talk about the direction
of the connection).

• Let A be the adjacency matrix of G: that is, Aij =

{
1 if {i, j} ∈ E
0 otherwise

.

• We use di to denote the degree of the i-th node; by definition of the adjacency matrix,
di =

∑n
j=1Aij. We define the diagonal matrix D formed by placing the degrees of the

nodes along its diagonal. That is, Dii = di for all i = 1, 2, . . . , n.

• We define the graph Laplacian as the n× n matrix L = D − A.

• We define a vector ei ∈ Rn as zero on all coordinates except the i-th, at which it is 1.
In this case, since |V | = n, the vector ei is n-dimensional.

• Define the vector e ∈ Rn as the vector of all 1s. Again, e is an n-dimensional vector in
this case.

CSE 547 - Machine Learning for Big Data - Problem Set 3 6

For a set of nodes S ⊆ V , we associate two values that measure, in some sense, its quality
as a cluster: the “cut” and the “volume”. We define these two values below.

The “cut” of a set S is defined as the number of edges that have one end point in the set S
and the other in its complement, S = V \S:

cut(S) =
∑

i∈S,j∈S

Aij.

Observe that by definition, cut(S) = cut(S).

The “volume” of a set is defined as the sum of degrees of nodes in S:

vol(S) =
∑
i∈S

di, (3)

where di is the degree of node i.

In addition to the above measures associated with set S, we define the normalized cut of a
graph (associated with a partitioning S) as

NCUT(S) =
cut(S)

vol(S)
+

cut(S)

vol(S)
(4)

For a set S to have a small normalized cut value, it must have very few edges connecting the
nodes inside S to the rest of the graph (making the numerators small), as well as roughly
equal volumes of S and S, so that neither denominator is too small.

We are now ready to start proving things. Please be careful when reading expressions
involving S and S, since at a quick glance they may look the same.

(a) Establishing Some Basics [21 points]

We first make some observations that will help us formulate the problem of minimizing
normalized cut nicely in the next sub-problem.

Given a set of nodes S, we define a vector xS ∈ Rn, such that the i-th coordinate x
(i)
S of xS

is defined as follows:

x
(i)
S =


√

vol(S)
vol(S)

if i ∈ S

−
√

vol(S)

vol(S)
otherwise

(5)

To clarify (because the font may not be clear), in Equation 5, in the case i ∈ S,
the term in the denominator under the square root is vol(S).

In the following, we are using the notation established at the start of this problem and some
set of node S ⊆ V . Prove the following statements:

CSE 547 - Machine Learning for Big Data - Problem Set 3 7

1. x⊤
SLxS = c · NCUT(S) for some constant c that depends on the problem parameters.

Note that you should specify this constant.

Hint: For any vector x ∈ Rn, it holds that x⊤Lx =
∑

{i,j}∈E(xi − xj)
2. You can start

the proof using this hint.

2. x⊤
SDe = 0.

3. x⊤
SDxS = 2m.

(b) Normalized Cut Minimization [12 points]

Based on the facts we just proved about x chosen as per Equation 5, we can formulate the
normalized cut minimization problem as follows:

minimize
S⊂V

x⊤
S LxS

x⊤
SDxS

subject to x⊤
SDe = 0,

x⊤
SDxS = 2m.

To be clear, we are minimizing over all (non-trivial) partitions (S, S), where the vectors
xS are defined as described in Equation 5. Note that the two constraints appearing in the
optimization are trivially maintained due to the form xS as we have shown in the previous
sub-problem. However, constraining x to take the form of Equation 5 makes this optimization
problem NP-Hard. We will instead relax the optimization problem, making it tractable,
and then round the relaxed solution back to a feasible point of the original problem. The
relaxation we choose eliminates the constraint on the form of x. This gives us the following
relaxed optimization problem:

minimize
x∈Rn

x⊤Lx
x⊤Dx

,

subject to x⊤De = 0,
x⊤Dx = 2m.

(6)

We could show that a minimizer of the optimization problem 6 is

x∗ = D−1/2v,

where v is an eigenvector corresponding to the second smallest eigenvalue of the normalized
graph Laplacian L = D−1/2LD−1/2.

Let’s prove this conclusion step by step.

1. Please prove that the smallest eigenvalue of L is 0 and the corresponding eigenvector
is e.

CSE 547 - Machine Learning for Big Data - Problem Set 3 8

2. Please prove the eigenvector corresponding to the smallest eigenvalue of L (normalized
graph Laplacian) is D1/2e.

Hint 1: You can start by proving that L is PSD and build your solution on that.
However, specify your arguments clearly.

Hint 2: Use the conclusion from part 1.

3. Use the linear transformation z = D1/2x and r = D1/2e. This is a valid operation
because the graph is connected, and therefore all the degrees are positive. The opti-
mization problem 6, in the transformed space, becomes:

minimize
z∈Rn

z⊤Lz
z⊤z

subject to z⊤r = 0
z⊤z = 2m.

Please prove the solution of this optimization problem is z∗ = v and x∗ = D−1/2v

Finally, to round the solution back to a feasible point in the original problem, we can
take the nodes corresponding to the positive entries of the eigenvector to be in the set
S and those corresponding to the negative entries to be in S.

Hint 1: For a symmetric matrix P , we can write any vector z as z =
∑n

i=1wivi, where
the vi are orthonormal eigenvectors of P .

Hint 2: Use the conclusion from part 2.

(c) Programming [12 points]

Now that we have obtained the new transformed version of our normalized cut minimization
problem and its solution, we will implement the spectral clustering algorithm for k = 2
clusters.

We have provided the dataset songs.csv in the folder spectral clustering/data, which
includes 10 features (e.g., release, loudness, danceability) for 1000 songs. The features
are already normalized. In this question, you are going to implement spectral clustering and
run it on the songs dataset to cluster these songs into two clusters. Then, you are going to
investigate these inferred clusters and identify features that distinguish the two clusters.

There are various methods for defining an adjacency matrix. For this question, we are going
to generate a simple adjacency matrix where two songs i, j are connected (i.e., Aij = 1) only
if their Euclidean distance is smaller than 1. The adjacency matrix A for this dataset is
defined as follows:

Aij =

{
1 if ∥xi − xj∥ < 1
0 otherwise

(7)

CSE 547 - Machine Learning for Big Data - Problem Set 3 9

Note that here we are adopting a simple version of a general method called ϵ-neighbourhood
graph which connects nodes (i.e., points) within ϵ distance of each other. Specifically, we
are defining a 1-neighbourhood graph (ϵ = 1) for our data matrix.

The algorithm for k = 2 clusters is as follows:

Algorithm 1 Spectral Clustering for k = 2

1: procedure Spectral Clustering
2: Construct the adjacency matrix A ∈ Rn×n

3: Compute the degree matrix D
4: Compute the Laplacian L = D −A and the normalized Laplacian L = D−1/2LD−1/2

5: Compute the eigenvector v corresponding to the second smallest eigenvalue of L and com-
pute x = D−1/2v ∈ Rn

6: Let xi be the ith element of x for i = 1, . . . , n
7: for each xi do
8: Cluster xi using the indicator function I, as defined in Equation 8, into clusters C1, C2

9: end for
10: end procedure

Most spectral clustering algorithms would use k-means algorithm in the last step. Here, for
simplicity, we use an indicator function instead. The indicator function is defined as follows:

I(i) =

{
i ∈ C1 if xi ≥ 0
i ∈ C2 otherwise

(8)

1. Please report the final cluster labels for the first 5 songs. For eigendecomposition, you
may use library functions for obtaining the eigenvalues and eigenvectors of a matrix
(e.g., numpy.linalg.eig in Python).

Hint: For sanity check, the clustering results for songs 6, 7, 8 are C1, C1, C1.

2. Now we start to explore the systematic differences between the two clusters. One simple
way is to compare the mean difference of each of the 10 original features between the two
clusters. In other words, for the two clusters you learned, calculate the mean feature
values across all samples in that cluster. Once you have this mean representation for
each cluster, calculate the difference between the mean features of the two clusters.

Please report the top 3 features with the highest absolute value of mean difference.
By looking at the features, briefly explain (1-2 sentences) what these clusters might
represent (any reasonable answer is correct).

3. Simply looking at the mean features for each cluster is useful yet quite limited. An
alternative way of investigating the learned clusters is to run t-tests for each feature
to see whether the differences between the two clusters are statistically significant.

For the 3 features you found in part 2, please run t-tests and report the p-values for
each of the 3 features. If you apply a threshold of p-value=0.05, which of these 3

CSE 547 - Machine Learning for Big Data - Problem Set 3 10

features are still significant? Briefly explain (1-2 sentences) why you think this is the
case.

For running t-tests, please use the library function scipy.stats.ttest ind(equal -

var = True) in Python.

What to submit

i. Proof of the 3 equalities in part 3(a).

ii. Proof of the 3 conclusions in part 3(b).

iii. The clustering result for the first 5 users [3(c)].

iv. The top 3 features with the highest absolute value of mean difference and interpretation
of the results [3(c)].

v. The p-values for the 3 features, the list of significant features, and interpretation of the
results [3(c)].

vi. Upload your implementation of the spectral clustering algorithm to Gradescope.

References

[1] Newman, M. E. Spectral methods for community detection and graph partitioning.
Physical Review E 88, 4 (2013), 042822.

	Dead Ends in PageRank Computations (25 points)
	Implementing PageRank and HITS (30 points)
	Spectral Clustering (45 points)

