
CSE 547: Machine Learning for Big Data Spring 2021

Problem Set 2
Please read the homework submission policies.

Assignment Submission All students should submit their assignments electronically via
GradeScope. No handwritten work will be accepted. Math formulas must be typeset using
LATEX or other word processing software that supports mathematical symbols (E.g. Google
Docs, Microsoft Word). Simply sign up on Gradescope and use the course code V84RPB.
Please use your UW NetID if possible.

For the non-coding component of the homework, you should upload a PDF rather than
submitting as images. We will use Gradescope for the submission of code as well. Please
make sure to tag each part correctly on Gradescope so it is easier for us to grade. There
will be a small point deduction for each mistagged page and for each question that includes
code. Put all the code for a single question into a single file and upload it. Only files in
text format (e.g. .txt, .py, .java) will be accepted. There will be no credit for coding
questions without submitted code on Gradescope, or for submitting it after the
deadline, so please remember to submit your code.

Coding You may use any programming languages and standard libraries, such as NumPy
and PySpark, but you may not use specialized packages and, in particular, machine learning
libraries (e.g. sklearn, TensorFlow), unless stated otherwise. Ask on the discussion board
whether specific libraries are allowed if you are unsure.

Late Day Policy All students will be given two no-questions-asked late periods, but only
one late period can be used per homework and cannot be used for project deliverables. A
late-period lasts 48 hours from the original deadline (so if an assignment is due on Thursday
at 11:59 pm, the late period goes to the Saturday at 11:59pm Pacific Time).

Academic Integrity We take academic integrity extremely seriously. We strongly encour-
age students to form study groups. Students may discuss and work on homework problems
in groups. However, each student must write down the solutions and the code independently.
In addition, each student should write down the set of people whom they interacted with.

Discussion Group (People with whom you discussed ideas used in your answers):

On-line or hardcopy documents used as part of your answers:

I acknowledge and accept the Academic Integrity clause.

(Signed)

https://courses.cs.washington.edu/courses/cse547/21sp/faq.html
https://www.cs.washington.edu/academics/misconduct
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1 Principal Component Analysis and Reconstruction

(40 points)

Principal Component Analysis (PCA) is a dimensionality reduction algorithm that represents
the data matrix as a set of principal components that are orthogonal to each other. Each of
these principal components captures a source of variation in the original data matrix such
that we can reduce the dimensions of the data while preserving as much information as
possible. Principal components are defined as the eigenvectors of the covariance matrix of
the data; thus, we will be implementing PCA using eigendecomposition.

This question will help you understand the basics of eigendecomposition. By examining the
dimensionality reduction and reconstruction of images, you will think and learn more about
informative representations of data.

Let’s do PCA and reconstruct pictures of faces in the PCA basis. As we will be making
many visualizations of images, plot these images in a reasonable way (e.g. make the images
smaller).

(a) Matrix Algebra Review [7 pts]

The trace of a square matrix M , denoted, by Tr(M ) is defined as the sum of the diagonal
entries of M .

1. [5 pts] Now we prove a few claims that will be helpful in the next problem. Define
Σ := 1

n
XTX, where X is the n× d data matrix. Let xi be the i-th row of X (so xi is

a d-dimensional vector). Let λ1 ≥ λ2 ≥ · · · ≥ λd be the eigenvalues of Σ. Show the
following two properties:

Tr(Σ) =
d∑

i=1

λi (1)

Tr(Σ) =
1

n

n∑
i=1

∥xi∥22 (2)

Hint 1: Symmetric matrices are orthogonally diagonalizable. That is, a symmetric
matrix A can always be written as A = UDUT , where D is a diagonal matrix with
the eigenvalues of A along the diagonal and U is an orthogonal matrix, whose columns
are the eigenvectors of A.

Hint 2: Tr(ABT) = Tr(BTA) for two matrices A and B of size n× d.

2. [2 pts] Now we have a d× k projection matrix P with PTP = Ik. We have the linear
projection from Rn×d to Rn×k X 7→ XP. We have the following result:

argmax
P∈Rd×k,PTP=I

Tr

(
1

n
PTXTXP

)
= P∗
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where each column of P∗ is the corresponding eigenvector ui for λi with i = 1, ..., k.
Note that ui and λi are the eigenvectors and eigenvalues of Σ as defined in 1.a.1. Please
prove:

Tr(
1

n
P∗TXTXP∗) =

k∑
i=1

λi

.

With the result obtained in part 1, we have 1 − λ1+···+λk

λ1+···+λd
= 1 −

∑n
i=1∥P∗Txi∥2∑n

i=1∥xi∥2
. This

metric is called the PCA fractional reconstruction error of using the top k out of d
directions.

(b) PCA [10 pts]

For this question we will use the dataset faces.csv from pca/data (adapted from the
Extended Yale Face Database B), which is composed of facial pictures of 38 individuals
under 64 different lighting conditions such as lit from the top, front, and side (some lighting
conditions are missing for some people). In total, there are 2414 images, where each image
is 96 pixels high and 84 pixels wide (for a total of 8064 pixels per image). Each row in the
dataset is a single image flattened into a vector in a column-major order. The images are
in grayscale, so each pixel is represented by a single real number between 0 (black) and 1
(white).

Define Σ, a 8064× 8064 matrix, as follows:

Σ =
1

n

n∑
i=1

xix
T
i

where the xi’s are points in our dataset as column vectors and n = 2414 is the number of
points in the dataset. Now compute the top 50 PCA dimensions; these are the 50 dimensions
which best reconstruct the data.

We will be implementing PCA using eigendecomposition. Thus, you may use library func-
tions for obtaining the eigenvalues and eigenvectors of a matrix (e.g. numpy.linalg.eig in
Python and eig or eigs in MATLAB). You should not use functions which directly compute
the principal components of a matrix. Please ask on Ed regarding other (non-basic) linear
algebra functions you may be interested in using.

1. [3 pts] What are the eigenvalues λ1, λ2, λ10, λ30, and λ50? Also, what is the sum of
eigenvalues

∑d
i=1 λi? (Hint: use the answer from the previous question).

2. [5 pts] From part (a) we know that fractional reconstruction error of using the top

k out of d directions is 1 −
∑k

i=1 λi∑d
i=1 λi

(this means that when k = d, our reconstruction

error is 0, which basically means that we use all the principal components and simply
reconstruct the original matrix). Plot this fractional reconstruction error for each of
the first 50 values of k (i.e. k from 1 to 50). So the X-axis is k and the Y -axis is the

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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fractional reconstruction error. Make sure your plots are legible at reasonable zoom
and the axes are labeled in your write-up.

3. [2 pt] Using 1-3 sentences, explain what the first eigenvalue captures, and why you
think λ1 is much larger than the other eigenvalues.

(c) Visualization of the Eigen-Directions [10 pts]

Now let us get a sense of the what the top PCA directions are capturing (recall these are the
directions which capture the most variance). Note that you are provided template code
to assist in plotting.

1. [5 pts] Display the first 10 eigenvectors as images. Label the images to denote which
eigenvector each image denotes.

Hint 1: If the images appear like random lines, try reshaping differently and then
transposing.

Hint 2: The eigenvectors you obtain are normalized to have length 1 in the L2 norm,
thus their entries are extremely small. To avoid getting all-black images, make sure to
re-normalize the image. in Python, matplotlib.pyplot.imshow does this by default.
If you are using imshow in MATLAB, you should pass an extra empty vector as an
argument, e.g. ”imshow(im, []);”.

2. [5 pt] Provide a brief interpretation (4-6 sentences) of what you think each eigenvector
captures (Hint: Look at each image and think about what features of the image the
eigenvector is capturing).

(d) Visualization and Reconstruction [13 pts]

1. [8 pt] We will now observe the reconstruction using PCA on a sample of images
composed of the following images:

(a) image 1 (row 0).

(b) image 24 (row 23).

(c) image 65 (row 64).

(d) image 68 (row 67).

(e) image 257 (row 256).

In the previous parts, we used eigendecomposition to extract the top k eigenvectors of
Σ. Now, we will examine reconstruction using PCA.

For each of these images, plot the original image and plot the projection of the image
onto the top k eigenvectors of Σ for k = 1, 2, 5, 10, 50. In particular, if U is the d × k
matrix of the top k eigenvectors, the reconstruction matrix will be UUT.



CSE 547: Machine Learning for Big Data - Problem Set 2 5

Specifically, you should obtain a 5× 6 table where in each row corresponds to a single
image, the first cell in every row is the original image and the following cells are the
reconstructions of the image with the 5 different values of k.

Hint: In this problem, we are observing (partial) combinations of images that al-
ready have a meaningful scale. Therefore, we want to keep the scale of the re-
sults and not re-normalize the images (in contrast to part (c)). If you are using
matplotlib.pyplot.imshow in Python, you should pass the additional arguments
vmin=0, vmax=1, e.g. imshow(im, vmin=0, vmax=1). If you are using imshow in
MATLAB, the default is not re-normalizing, so you should not pass additional argu-
ments, e.g. simply use ”imshow(im);”.

2. [5 pt] Provide a brief interpretation (4-6 sentences), in terms of your perceptions of
the quality of these reconstructions. Explain the results in light of your answers for
part (c). Discuss specific examples regarding pairs of images and eigenvector set (i.e.
how does including a set of eigenvectors affect specific images?)

What to submit:

(i) Proofs for the claims in 1(a).

(ii) The values of λ1, λ2, λ10, λ30, λ50 and
∑

i λi, a plot of the reconstruction error vs. k
and an explanation for 1(b).

(iii) Plots of the first 10 eigenvectors as images and their interpretation [1(c)].

(iv) Table of original and reconstructed images and their interpretation [1(d)].

(v) Upload the code to Gradescope.

2 k-means on Spark (30 points)

Note: This problem requires substantial computing time. Don’t start it at the last minute.
Also, you should not use the Spark MLlib clustering library for this problem.

This problem will help you understand the nitty gritty details of implementing clustering
algorithms on Spark. In addition, this problem will also help you understand the impact of
using various distance metrics and initialization strategies in practice. Let us say we have
a set X of n data points in the d-dimensional space Rd. Given the number of clusters k
and the set of k centroids C, we now proceed to define various distance metrics and the
corresponding cost functions that they minimize.
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Given two points a, b ∈ Rd, such that a = [a1, a2 · · · ad] and b = [b1, b2 · · · bd] the Euclidean
distance or L2 distance between a and b is defined as:

∥a− b∥2 =

√√√√ d∑
i=1

|ai − bi|2 (3)

The Manhattan distance or L1 distance between a and b is defined as:

∥a− b∥1 =
d∑

i=1

|ai − bi| (4)

The k-means algorithm aims to partition X to k clusters by defining a set C = {c(1), . . . , c(k)}
of k centroids and partitioning X to k clusters P = {P1, . . . , Pk}, so to minimize the sum
of squared L2-distances between every point and the centroid associated with its cluster.
Formally, k-means tries to solve the following minimization problem:

min
C,P

Φ(C,P) = min
C,P

k∑
i=1

∑
x∈Pi

∥x− c(i)∥22

where Φ(C,P) =
∑k

i=1

∑
x∈Pi
∥x− c(i)∥22 is the ”cost” associated with the set of centroids C

and the partition P .

For a fixed set of centroids C, the cost function Φ is minimized by assigning every point to
the centroid closest to it (in L2). Thus, the cost ϕ(C) associated with C is:

ϕ (C) = min
P

Φ(C,P) =
∑
x∈X

min
c∈C
∥x− c∥22 (5)

For a fixed partition P , the cost function Φ is minimized by setting the centroid of every
cluster to be the mean of all the points in that cluster. Thus, the algorithm operates
as follows: Initially, k centroids are initialized. Thereafter, alternately, given the set of
centroids, each point is assigned to the cluster associated with the nearest centroid; and the
centroids are recomputed based on the assignments of points to clusters. The above process
is executed for several iterations, as is detailed in Algorithm 1.
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Algorithm 1 k-means Algorithm
1: procedure k-Means
2: Select k points as initial centroids of the k clusters.
3: for iteration := 1 to MAX ITER do
4: for each point x in the dataset do
5: Cluster of x← the cluster with the closest centroid to x
6: end for
7: for each cluster P do
8: Centroid of P ← the mean of all the data points assigned to P
9: end for
10: Calculate the cost for this iteration.
11: end for
12: end procedure

Instead of minimizing the cost function Φ, which is defined using the squared L2 distance,
we can minimize a cost function defined using the L1 distance, namely:

Ψ(C,P) =
k∑

i=1

∑
x∈Pi

∥x− c(i)∥1

Note that in this case the distance is not squared.

Still, for a fixed set of centroids C, the cost function Ψ is minimized by assigning every point
to the centroid closest to it (but this time in L1). Thus the cost ψ(C) associated with C is:

ψ (C) = min
P

Ψ(C,P) =
∑
x∈X

min
c∈C
∥x− c∥1 (6)

In contrast to Φ, for a fixed partition P , the cost function Ψ is minimized setting the centroid
of every cluster to be the median in every dimension of the points in that cluster. Thus,
we obtain a variation on k-means, which is known as k-medians.

Please use the dataset from kmeans/data within the bundle for this problem.

The folder has 3 files:

1. data.txt contains the dataset which has 4601 rows and 58 columns. Each row is a
document represented as a 58 dimensional vector of features. Each component in the
vector represents the importance of a word in the document.

2. c1.txt contains k initial cluster centroids. These centroids were chosen by selecting
k = 10 random points from the input data.

3. c2.txt contains initial cluster centroids which are as far apart as possible. (You can
do this by choosing the first centroid c(1) randomly, and then finding the point c(2)

that is farthest from c(1), then selecting c(3) which is farthest from c(1) and c(2), and
so on).
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Set the number of iterations (MAX ITER) to 20 and the number of clusters k to 10 for all the
experiments carried out in this question. Your driver program should ensure that the correct
amount of iterations are run.

Note: Please ensure that your solution works correctly with duplicate data points. If not,
your computation might be slightly off.

(a) Exploring initialization strategies with Euclidean distance [15 pts]

Implement k-means using Spark and compute the cost function ϕ(i) (Equation 5) after every
iteration i = 0, 1, . . .1. This means that for your 0th iteration, you’ll be computing the cost
function using the initial centroids located in one of the two text files. Run the k-means on
data.txt using c1.txt and c2.txt.

Hint: Note that you do not need to write a separate Spark job to compute ϕ(i). You should
be able to calculate costs while partitioning points into clusters.

Hint 2: The cost after 5 iterations starting from the centroids in c1.txt is approximately
460, 538, 000.

1. [8 pts] Generate a graph where you plot the cost function ϕ(i) as a function of the
number of the iteration i=0,. . . ,20 for c1.txt and also for c2.txt. Label your axes
and add a legend for the subgraphs for c1.txt and c2.txt.

2. [7 pts] By how many percent does the cost change over the first 10 iterations of k-
means when initializing using c1.txt and when using c2.txt? (e.g. if the cost before
the first iteration was 10 and after the 10th iteration it is 7, then it decreased by 30%).

Explain which initialization method is better in terms of the cost ϕ(i), and your intu-
ition as to why.

Hint: The cost for c1 decreases by ∼26% after 10 iterations. Note that by convention
you are comparing cost after 10 cluster updates to cost with initialized clusters.

(b) Exploring initialization strategies with Manhattan distance [15 pts]

Implement k-medians using Spark and compute the cost function ψ(i) (Equation 6) after
every iteration i = 0, 1, . . . 2. This means that, for your 0th iteration, you’ll be computing
the cost function using the initial centroids located in one of the two text files. Run the
k-medians on data.txt using c1.txt and c2.txt.

Hint: This problem can be solved in a similar manner to that of part (a).

1 We are overloading the notation here. The more precise way to express ϕ(i) would be ϕ(Ci), where Ci
is the set of centroids after iteration i.

2Same as footnote 1
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Hint 2: The cost after 5 iterations starting from the centroids in c1.txt is approximately
412, 012.

1. [8 pts] Generate a graph where you plot the cost function ψ(i) as a function of the
number of the iteration i=0,. . . ,20 for c1.txt and also for c2.txt. Label your axes
and add a legend for the subgraphs for c1.txt and c2.txt.

2. [7 pts] By how many percent does the cost change over the first 10 iterations of
k-medians when initializing using c1.txt and when using c2.txt?

Explain which initialization method is better in terms of cost ψ(i), and your intuition
as to why.

Hint: Similar to k-means with Euclidean distsance, the cost for c1 decreases by ∼26%
after 10 iterations.

What to submit:

(i) Upload the code for 2(a) and 2(b) to Gradescope (Your solution may be in either one
or two files).

(ii) A plot of cost vs. iteration for two initialization strategies for 2(a).

(iii) Percentage of change and your explanation for 2(a).

(iv) A plot of cost vs. iteration for two initialization strategies for 2(b).

(v) Percentage of change values and your explanation for 2(b).

3 Implicit Feedback Recommendation System (30 points)

In many real-world applications, it’s expensive to collect explicit rating data. However,
it’s cheap to collect implicit feedback data such as clicks, page views, purchases and media
streams at a large and fast scale.

In this problem, you will learn more about implicit feedback recommendation systems by
focusing on Alternating Least Square (ALS) algorithm. Deriving the formula yourself by
following all the steps of the question and trying the algorithm on a real dataset will help
you understand how implicit feedback data can be used to learn more about users and items.

Let U be a set of m users, and I be a set of n items. For every user u ∈ U and item i ∈ I,
let’s define such observable implicit feedback as rui:

rui = The number of times user u interacted with item i
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Note that rui could be allowed to have non-integer values; e.g. rui = 0.5 may indicate that
user u watched half of movie i. We cannot observe the true preference pui of user u for item
i. For simplicity, we assume pui can only take the values 1 (like) or 0 (dislike).

Following the latent factor model in lecture, we assume pui is the dot product of a user vector
xu ∈ Rf and an item vector yi ∈ Rf for each user u and item i:

pui ≈ xT
uyi

If user u has interacted with item i, we have reason to believe that pui = 1 with some
confidence. The more the user interacts with that item, the more confident we are that
pui = 1. To capture this idea, we try to minimize the following heuristic cost function over
possible assignments to the user matrix X = [x1 · · ·xm]

T ∈ Rm×f and to the item matrix
Y = [y1 · · ·yn]

T ∈ Rn×f :

Cimplicit (X,Y ) =
∑

u,i∈U×I

cui

(
pui − xT

uyi

)2

+ λ

∑
u

∥xu∥2 +
∑
i

∥yi∥2
 , (7)

where

pui =

{
1 if rui > 0

0 if rui = 0
,

cui = 1 + αrui is our confidence in pui. Empirical evidence suggests setting hyperparameter
α to the sparsity ratio = #nonzero rui

#zero rui
.

We apply an algorithm known as Alternating Least Square (ALS) to minimize Cimplicit. The
basic idea of ALS is: first hold the user vectors fixed and solve for the minimum in the item
variables, then hold the item vectors fixed and solve for the minimum in the user variables,
and repeat until convergence.

Algorithm 2 ALS
1: procedure ALS
2: for iteration← 1 to MAX ITER do
3: for each item i do ▷ Step 1: update item matrix Y
4: pi ← all the preferences for item i ▷ pi ∈ Rm

5: Ci ← the diagonal m×m matrix, where [Ci]uu = cui.

6: yi ←
(
XTCiX + λI

)−1
XTCipi

7: end for
8: for each user u do ▷ Step 2: update user matrix X
9: pu ← all the preferences of user u ▷ pu ∈ Rn.
10: Cu ← the diagonal n× n matrix, where [Cu]ii = cui.
11:

12: xu ←
(
Y TCuY + λI

)−1
Y TCupu

13: end for
14: end for
15: end procedure
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(a) [3 pts] Explain why we give pui = 0 (or rui = 0) the lowest confidence weight (cui = 1).

(b) [6 pts] Treat yi as fixed for all i ∈ I. Show that the optimal xu with respect to the
cost function (7) can be expressed as:

xu =
(
Y TCuY + λI

)−1

Y TCupu,

where Y = [y1 · · ·yn]
T ∈ Rn×f ,Cu = diag(cu1, . . . , cun) ∈ Rn×n, and pu = [pu1, . . . , pun]

T ∈
Rn.

Hint: You may use the following in your derivation. For any two vectors a, b ∈ Rd, we
have:

∂aTb

∂a
= b

∂∥a∥22
∂a

=
∂aTa

∂a
= 2a.

(c) [5 pts] For the calculation of xu, a computational bottleneck is computing Y TCuY ,
where the naive solution requires time O(nf 2). It’s because Y TCuY has f 2 entries and
each entry requires (3n− 1) operations (i.e., 2n multiplications and n− 1 additions). A
trick is to re-express Y TCuY = Y TY + Y T (Cu − I)Y . Now, Y TY is independent of
u and can be precomputed. Denote nu as the number of items u iteracted with.

How many nonzero entries does Cu − I have?

Assuming that Cu−I is represented as a sparse matrix, derive that the time complexity
of computing Y T (Cu − I)Y for a single user u is O(nuf

2). The real data set typically
has nu ≪ n. We could see this trick significantly improves the naive solution which
requires O(nf 2). Similarly, we could use the same trick for Y TCupu, where Y

TCupu =
Y T (Cu − I)pu + Y Tpu

(d) [16 pts]We have provided a real dataset (user artists.txt) in implicit feedback/data

folder containing the listening history of 3000 artists from 1882 users in Last.fm3. The
file contains tab-separated triplets (one triplet per line) of the form < u, i, rui >, where
u is a user label, i is an artist label and rui is the number of time user u interacted with
artist i (e.g. listened to him). The file artists.txt contains tab-separated pairs (one
pair per line) of the form < i, si >, where i is an artist and si is the name of the artist.
We also provide a smaller dataset (user artists small.txt) for sanity check, which
contains 100 artists and 100 users.

For the two datasets, calculate the sparsity ratio:

α =

∑
ui∈U×I 1[[rui > 0]]∑
ui∈U×I 1[[rui = 0]]

Then, implement the implicit feedback recommendation system via ALS for this dataset.
Here we assume f = 3 and λ = 0.01. For initialization, set X(0) as a matrix with all

3This dataset was built by the Information Retrieval group at Universidad Autonoma de Madrid
(http://ir.ii.uam.es).
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elements = 0.5 and Y (0) as a zero matrix. You have been provided a skeleton in the
file ALS.py in the folder implicit feedback/code. Complete the function ALS. Note
that the template does not include code for other functions, such as reading the file,
calculating the objective function, running iterations. You need to implement all the
other necessary functions yourself. Answer the following questions:

Run your program for 100 iterations. What’s initial Cimplicit? What’s Cimplicit after
the 1st iteration? Plot the value of the objective function Cimplicit as a function of the
number of iterations. Report top 2 favorite artists for user 0, 20 after the 1st and 100th
iterations. See below for additional instructions on what to report.

Additional Instructions:

We found that there might be subtle variations in the final values based on the im-
plementation and runtime environment. For minimizing these variations, please follow
these instructions:

(1) Please do not round off values at any stage including the sparsity ratio (compute
it programmatically). Also, avoid using explicit floating point precision typecasting
such as dtype=np.float32.

(2) In your implementation, please store X, Y , Ci−I and Cu−I as sparse matrix. You
may use csr matrix in library scipy.sparse. And please use scipy.sparse.linalg.spsolve
to solve and update xu and yi.

(3) To speed up your implementation, you should avoid using converting functions such
as “toarray()” and “todense()” within any for loop.

Note: Taking these subtle variations into account, we defined a longer list of potential
top 3 recommendations for each user. Your predictions for each user are expected to
be within these lists even though the ordering of the top recommendations might show
small variations depending on the implementation and runtime environment.

Hint 1: For the user artists small.txt dataset, after 1 iteration, Cimplicit is between
1400 and 1600, after 100 iterations, the top 5 favorite artists for user 1 include 30 and
95.

Hint 2: Use the trick from part (c) to speed up your implementation. The expected run
time for the the user artists.txt dataset is 10-15 minutes.

What to submit:

(i) Answer to 3(a).

(ii) Proof for optimality of xu =
(
Y TCuY + λI

)−1
Y TCupu.

(iii) The number of nonzero entries in Cu−I and the proof for the O(nuf
2) time complexity

of computing Y T (Cu − I)Y for each u.

(iv) The sparsity ratio α .
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(v) Initial Cimplicit and Cimplicit after the 1st iteration.

(vi) The top 2 artist recommendations for user 0, 20 after the 1st and 100th iterations.

(vii) A plot of Cimplicit vs. the iteration over the execution of your implementation of ALS.

(viii) Upload your implementation for ALS to Gradescope.
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