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Acknowledgment: This note was originally compiled by Jessica Su for CS224W at Stan-
dard with substantial modifications by Yikun Zhang at Winter 2023 for CSE547 / STAT548
at UW. Parts of this note are adapted from Lecture 8 of Professor Yen-Chi Chen’s ! and
Professor Michael Perlman’s lecture notes (Perlman, 2020) for STAT512. Other good refer-
ences about linear algebra includes Horn and Johnson (2012); Axler (2015) and notes from
(CS224W at Stanford:

® http://snap.stanford.edu/class/cs224w-2014/recitation/linear_algebra/LA_Slides.pdf,
® http://snap.stanford.edu/class/cs224w-2015/recitation/linear_algebra.pdf.

Note: We only discuss the vectors and matrices with real entries in this note, though the
stated results also hold for complex entries.

1 Vector Space, Span, and Linear Independence

Vector space: A wvector space over the real numbers R is a set of vectors that is closed
under additions with an identity as the zero vector 0 and additive inverses in the set. It is
also closed under scalar multiplications of the vectors by elements in R.

The most common vector space in Machine Learning is the Fuclidean space R", which
consists of all ordered n-tuples of real numbers. A vector of R™ can be denoted by

X1

X2
€Xr =

T,

T

or arow vector €' = [x1, ..., x,], where x;,1 = 1, ..., n are called its components or coordinates.

1.1 Vector Operations

Dot product: The geometric properties of R" are derived from the Fuclidean dot product
defined as:

(@ y) =z "y =21y + -+ Tayn = Y Tt
=1

1See http://faculty.washington.edu/yenchic/20A_stat512.html.
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where @ = [z1,...,z,]" and y = [y1, ..., yn]" are in R,

Orthogonality: Two vectors in R™ are orthogonal if and only if their dot product is zero.
In R?, we also call orthogonal vectors perpendicular.

Norm: The standard f,-norm or length of a vector & = [z1, ..., z,]T € R™ is given by

|zl[y = /2] + - + 22

Other possible norms in R™ include

D=

%
i=1

o (ynorm: [z, = (Z x]-’) . It reduces to the above f3-norm when p = 2.

o (-norm: ||lx|| = max |zi|. Notice that ||z||, < ||z[|, < nv ||| .-
i=1,...,n
When the context is clear, we often write the norm of a vector « as ||z||. The norms in R™
can be used to measure distances between data points (or vectors) in R™.

Triangle inequality: For two vectors @,y and any norm ||-|| in R", the triangle inequality
states that
|z +yl| < ||+ [[yll,

and its reverse version goes as
e = yll = | llell =[]l |

1.2 Subspaces and Span

Subspace of R": A subspace of R™ is a subset of R™ that is, by itself, a vector space over
R using the same operations of vector addition and scalar multiplication in R™. In other
words, a subset of R” is a subspace precisely when it is closed under these two operations.

Linear combination: A linear combination of the vectors vy, ..., v, (in R™) is any expression
of the form a;v; + - 4+ apv, where k is a positive integer and aq,...,a; € R. Note that
some of ay, ..., a; may be zero.

Span: The span of a set S of vectors consists of all possible linear combinations of finitely
many vectors in S, i.e.,

spanS = {ajv; + - -+ + qpUg : V1, ...,V € S, a1, ...,ay ER, and k=1,2,...}.

1.3 Linear Independence

The vectors vy, ..., v, (in R™) are linearly dependent if and only if there exist ay,...,a, € R,
not all zero, such that a;v; +--- + a,v, = 0.

A finite set of vectors vy, ..., v, (in R") is linearly independent if it is not linearly dependent.
In other words, we cannot write any vector in vy, ..., v, in terms of a linear combination of
the other vectors.
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2 Matrices

A m x n matrix A € R™*" is an array of mn numbers as

All Al? e Aln
. A21 A22 e AQn
Aml Am2 T Amn

It represents the linear mapping (or linear transformation) from R™ to R™ as

. _
Z Aqix;
Ay A - Ay, 1 o 1
Ay Agg -+ Agy X2 Z Agix; To n
x— Ax = ) ) ) ) | = |i=1 forany x = | . | € R™
Aml Am2 e Amn Ty n ‘ Tp
Z Apiz;
Li=1 i

Here, the linearity means that A(ax + by) = aAx + bAy for any =,y € R” and a,b € R. In
particular, when m = n, A € R"*" is called a square matrix.

2.1 Matrix Operations

Matrix addition: If A, B are both m x n matrices, then the matrix addition is defined as

elementwise additions as:
[A+ Blij = Aij + Bj;.

Example 1. Here is an example of a matrix addition for two matrices in R?*? as
1 2], [5 6] _[1+5 2+46] _[6 8
3 4 7 8] 347 448 |10 12|

Matrix multiplication: For two matrices A € R™*" B € R"*P_ the product AB isamXxp
matrix, whose (i, j)-entry is

[AB; = AuByy
k=1

foralll1 <i:<mand 1< 5 <p.

Example 2. Here is an example of the matrix multiplication for two square matrices in
R2><2

ERI R R eI A oo g e

3 4| |7 8] T |3x54+4x7 3x6+4x8 43 50

We can also multiply non-square matrices when their dimensions are matched (i.e., the
number of columns of the first matrix should be equal to the number of rows of the second
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matrix) as
1 2 1 2 3 1-142-4 1-24+2-5 1-3+2-6 9 12 15
3 4 -{4 5 6}: 3-14+4-4 3-24+4-5 3-3+4-6] =19 26 33
5 6 5:-1+6-4 5-2+6-5 5-3+6-6 29 40 51

Properties of matrix multiplications:
e Associativity: (AB)C = A(BC).
o Distributivity: A(B+ C) = AB + AC.

e However, matrix multiplication is in general not commutative. That is, AB is not
necessarily equal to BA.

e The matrix multiplication between a 1-by-n matrix and an n-by-1 matrix is the same
as taking the dot product of the corresponding vectors.

Matrix transpose: If A = [A;;] € R™*" then its transpose AT is a n X m matrix, whose
(i,j)—entry is Aﬂ That iS, [AT]U = A]z

Example 3. Here is an example of transposing a 3 x 2 matrix, where we switch the matrix’s

rows with its columns as .

3| - B
5 6
Properties of matrix transpose:
o (AT)T = A for any matrix A € R™*",
o (A+ B)T = AT + BT with A, B € R™*",
e (AB)T = BT AT with A € R™" and B € R™?.

Proof. Let AB = C and (AB)T = D. Then,
(AB);‘Z;‘ = Dij = Cji

= Z A By
k

= (AT)(B")ax
!

= S Bl
k

It shows that D = BT AT and the result follows. m
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Identity matrix: The identity matrix I,, is an n X n (square) matrix given by

In: . R
00 - 1

where it has all 1’s on the diagonal and 0’s everywhere else. It is sometimes abbreviated I
when the dimension of the matrix is clear. For any A € R™*" it holds that AI, = I,,,A.

Matrix inverse: Given a square matrix A € R™ " its inverse A™! (if it exists) is the
unique matrix satisfying

AATT=ATTA=1T,.

Notice that the inverse of a matrix may not always exist. Those matrices that have an
inverse are called invertible or nonsingular.

Properties of matrix inverse: Whenever the matrices A, B € R™" are invertible, we
have the following properties.

(A~1)1 = A.
(AB)"! = B-1A-L.
(A~H)T = (AT)~!. (It can be proved by noting that (A=) (AT) = (AAY)T =1,.)

All the columns (or rows) of A are linearly independent, i.e., rank(A) = n.

det(A) # 0.

Matrix rank: The rank of a matrix A € R™*" is the dimension of the linear space spanned
by its rows (or columns). One can verify that

e rank(A) < min{m,n} and rank(A4) = rank(A7).
e rank(AB) < min {rank(A),rank(B)} for any A € R™*" and B € R"*?.

Matrix trace: For a square matrix A € R"*", the trace of A is defined as

tr(A) = Zn: Ay,
i=1

i.e., it is the sum of all the diagonal entries of A. Specifically, the traces of matrices satisfy
the following properties:

o tr(aA+bB) = atr(A) + btr(B) for any A, B € R"*" and a,b € R.
o tr(A) = tr(AT) for any A € R™".
o tr(AB) = tr(BA) for any A € R™*" and B € R"™,
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Proof. By direct calculations,

tr(AB) = Z[ = Z (Z Aszm>
= . (ZB;W zk) = . [BA]kk:tr(BA)

]

Determinant: For a square matrix A € R™ " its determinant det(A) or |A| is defined as

det(A) = Z <sign(7r) HAm(z‘)> ;

™

where the sum is over all n! permutations = : {1,...,n} — {1,...,n} and sign(7) =1 or —1
according to whether the minimum number of transpositions (i.e., pairwise interchanges)
necessary to achieve it starting from {1,...,n} is even or odd. One can also calculate det(A)
through the Laplace expansion by minor along row i or column j as

n n

det(A) = (—1)""F Ay, det(My) = (—1)FH Ay det(My,),

k=1 k=1

where M;;, € R=Dx(=1) denotes the submatrix of A obtained by removing row i and column
k of A. Geometrically, the determinant of A = [ay, as, ..., a,] € R™" gives the signed volume
of a n-dimensional parallelotope P = {c1a; + - - + c,ay, : ¢1, ..., ¢, € [0,1]}, i.e.,

det A = +Volume(P),

where a4, ..., a,, are column vectors of A.

Example 4. We give explicit formulae for computing the determinants of square matrices
with dimension less than 3 as:

det[AH] = Alb
A A12}
det = A1 Ay — A A
€ {Am Agy 114122 124121,
A A Agg
det | Ao Age Aog| = A11AxwAss + A1pAszAsy + A13AnAsy
Asp Az Asg

- A11A23A32 - A12A21A33 - A13A22A31-

Properties of determinant: For any A, B € R"*",
e det(AB) = det(A) - det(B).
o det(A™1) = [det(A)] " and det(AT) = det(A).
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2.2 Special Types of Matrices

Diagonal matrix: A matrix D € R™™" is diagonal if D;; = 0 whenever ¢ # j. We write a
diagonal matrix D as

d 0 -~ 0
. 0 dy -~ 0
D = dlag(dl,dg, ce ,dn> = . . . .
One can verify that
a0 - 0
kL 0 d& 0
0 O d"

Triangular matrix: A matrix A € R™" is lower triangular if A;; = 0 whenever ¢ < j.
That is, a lower triangular matrix has all its nonzero elements on or below the diagonal.
Similarly, a matrix A is upper triangular if its transpose AT is lower triangular. When A is
a lower or upper triangular matrix, det(A) = [[._, Au-

Orthogonal matrix: A square matrix U € R™*" is orthogonal if UUT = UTU = I,,. This
implies that

o U! = UT, i.e., the inverse of an orthogonal matrix is its transpose. Moreover,
det(U) = £1.

e the rows (or columns) of U form an orthonormal basis for R".

e U preserves angles and lengths, i.e., for any vectors ¢,y € R",

Uz, Uy) = (Uz)"(Uy) = 2"UTUy = (z,y) and [|Uz]] = ||z]3.

Symmetric matrix: A square matrix A € R™*" is symmetric if A = AT, i.e., A;; = Aj; for
all entries of A.

Projection matrix: A square matrix P € R"*" is a projection matriz if it is symmetric
and idempotent: P? = P.

Positive definite matrix: A (real) symmetric matrix S € R™" is positive semi-definite
(PSD) if its quadratic form is nonnegative, i.e.,

xSz >0

for all x € R". Furthermore, S is positive definite (PD) if its quadratic form is strictly
positive, i.e.,
x’Sx >0

for all & € R™ with x # 0. Here are some useful properties of PSD or PD matrices.

7
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A diagonal matrix D = diag(d, ...,d,) is PSD if and only if d; > 0 for all i = 1, ..., n.

It is PD if and only if d; > 0 for all ¢« = 1,...,n. In particular, the identity matrix I,

is PD.

o If S € R™" is PSD, then ASAT is also PSD for any matrix A € R™*",

o If S € R™" is PD, then ASA” is also PD for any matrix A € R™" with full rank

rank(A) =m < n.

o AAT is PSD for any matrix A € R™*". AAT is PD for any matrix A € R™*" with full

rank rank(A) =m < n.

e Sis PD = S has full rank = S ! exists = S7! = (571)5(S )T is PD.

2.3 Eigenvalues and Eigenvectors

Given a square matrix A € R™" X\ € R is an eigenvalue of A with the corresponding

eigenvector & € R"” and « # 0 if Ax = \x.

By convention, the zero vector cannot be an eigenvector of any matrix.

Example 5. If
2 1
=[]

3. . o
then the vector = [_ 3] is an eigenvector with eigenvalue 1, because

2 1|3 3 3
o= |1 o] 3] - [ - [3]
2.3.1 Solving for eigenvalues and eigenvectors

We exploit the fact that Az = Az if and only if

(A= ALz = 0.

(1)

(Note that AI, is the diagonal matrix where all the diagonal entries are A, and all other

entries are zero.)

The equation (1) has a nonzero solution @ if and only if det(A — A\I,,) = 0; see Section 1.1
in Horn and Johnson (2012). Therefore, we can obtain the eigenvalues of a matrix A by
solving the characteristic equation det(A — AI,,) = 0 for A. Once we have done that, you can
find the corresponding eigenvector for each eigenvalue A by solving the system of equations

(A—AI,)x =0 for x.
Example 6. If

2 1
o]
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then

2-) 1
A_)‘I”:{l 2—)\}

and
det(A—AL,) = (2—A)?—1=X\ —4\+3.
Setting it to 0 yields that A = 1 and A\ = 3 are possible eigenvalues.
(i) To find the eigenvectors for A = 1, we plug A into the equation (A — AI,,)x = 0. This

gives us

1 1 1| 0

11 T - 0
Any vector with o = —z; is a solution to this equation, and in particular, [_33] is one
solution.

(ii) To find the eigenvectors for A = 3, we again plug A into the equation and obtain that

Rl F Y

Any vector where x5 = x; is a solution to this equation.

e Note: The above method is never used to calculate eigenvalues and eigenvectors for large
matrices in practice. We will introduce the power iterative method in our lectures to find
eigenpairs instead.)

2.3.2 Properties of eigenvalues and eigenvectors
o If A € R™™ is symmetric, then all its eigenvalues are real.

e The eigenvalues of any (lower or upper) triangular matrix A € R™" are its diagonal
entries.

e The trace of a matrix A € R"*" is equal to the sum of its eigenvalues, i.e., tr(A) =
Yoy A with Aq, ..., A, being the eigenvalues of A.

o det(A) =[], \i, where Ay, ..., A, is the eigenvalues of A € R™*".
e A symmetric matrix is PSD (PD) if all its eigenvalues are nonnegative (positive).

e The eigenvalues of a projection matrix are either 1 or 0.

2.4 Matrix Norms

Frobenius norm: Given a matrix A € R™*" its Frobenius norm is defined as

1AllF =, [> Ay = tr(ATA).
i
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We can compute ||A||, as [|A||p = \/o1(4)? + -+ 0,(A)2, where 0;(A),i = 1,...,q are sin-
gular values of A and ¢ = min{m,n}; see Section 3 for the definition of singular values. In
particular, if A is a symmetric matrix in R™*", then ||A||, = /D> _i_; A7 with A1, ..., A, being
the eigenvalues of A.

Maximum norm: The maximum norm (or {s-norm) for A € R™*" is defined as || Al =
max; ; |Ai;|. Strictly speaking, ||-|| .. is not a matrix norm because it does not satisfy the
submultiplicativity [|AB|| < ||A||||B||- However, it is a vector norm when we consider R™*"

as a mn-dimensional vector space; see Section 5.6 in Horn and Johnson (2012).

Operator norm: For any matrix A € R™*" and {,-norm for vectors in R™ and R", then
the corresponding operator norm [|Al|, is defined as

Ax
1411, = sup 122
art

o llzll,

For the special cases when p = 1,2, 0o, these (induced) operator norms can be computed as

e ||A4]]; = max > ", |A;|, which is simply the maximum absolute column sum of the

igi<n
matrix.
o |4l = max > i1 [Ail, which is simply the maximum absolute row sum of the
matrix.
o ||All, = VAmax(AAT) = opax(A), where Apa(AAT) is the maximum eigenvalue of

AAT and 0.4 (A) is the maximum singular value of A.

There are several useful inequalities between these matrix norms. For any A € R"™*",

1Al < 11Alp < VR llAlly s [Allgax < Al < Vmnl[All ey, and [[A]lp < Vmn]|Al] gy -

3 Spectral Decomposition and Singular Value Decom-
position (SVD)

Theorem 1 (Spectral Decomposition of a Real Symmetric Matrix). For a symmetric (square)
matriz A € R™", there exists a real orthogonal matrix U € R™™™ such that

A=UAN" =) Nuu!,
=1

where A = diag(A1, ..., \n), U = [ug, us, ..., uy,|, and uq, ..., u, are orthonormal eigenvectors
of A associated with eigenvalues Ay, ..., \y.

The spectral decomposition also provides us with a convenient method for computing the
power A¥ = UA*UT and exponentiation exp(A) = U exp(A)UT of a real symmetric matrix
A e R,

While the spectral decomposition (Theorem 1) only works for symmetric (square) matrices,
it is also feasible to diagonalize a rectangular matrix A € R™*" through orthogonal matrices.

10
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Theorem 2 (Singular Value Decomposition (SVD)). Let A € R™™ with ¢ = min{m,n}.
There exist orthogonal matrices U = [uy, ..., U] € R™™ and V = [vy,...,v,] € R™" as
well as a (square) diagonal matriz ¥, = diag(oy, ..., 0,) € R¥*9 such that

q
A=UxV" =Y sl =US, V7,
i=1

where U = [uy, ..., u,] € R™ V = [vy,...,v,] € R"*, and

Y=Y, m=n,
Y =[%X,0] e R™" if n > m,

Y= [E(D)Q] e R™" if m > n.

Here, 01,...,0, are called the singular values of A, which are eigenvalues of AAT when
m < n or AT A when m > n.

Notice that the number of nonzero singular values of A determines the rank of A. During
Lecture 6, we will leverage the singular value decomposition to reduce the dimension (or
matrix rank) of a user-movie rating matrix.
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