Optimization in the "Big Data" Regime: Averaging and Statistics

Sham M. Kakade

Machine Learning for Big Data CSE547/STAT548

University of Washington

Tradeoffs in Large Scale Learning.

Tradeoffs in Large Scale Learning.

- Many issues sources of "error"
- approximation error: our choice of a hypothesis class
- estimation error: we only have *n* samples
- optimization error: computing exact (or near-exact) minimizers can be costly.
- How do we think about these issues?

The true objective

- hypothesis map $x \in \mathcal{X}$ to $y \in \mathcal{Y}$.
- have *n* training examples $(x_1, y_1), \dots (x_n, y_n)$ sampled i.i.d. from \mathcal{D} .
- Training objective: have a set of parametric predictors $\{h(x, w) : w \in \mathcal{W}\},$

$$\min_{w \in \mathcal{W}} \hat{L}_n(w) \text{ where } \hat{L}_n(w) = \frac{1}{n} \sum_{i=1}^n \operatorname{loss}(h(x_i, w), y_i)$$

• True objective: to generalize to \mathcal{D} ,

$$\min_{w \in \mathcal{W}} L(w)$$
 where $L(w) = \mathbb{E}_{(X,Y) \sim \mathcal{D}} loss(h(X,w), Y)$

Optimization: Can we obtain linear time algorithms to find an ϵ -accurate solution? i.e. find \hat{h} so that

$$L(\hat{w}) - \min_{w \in \mathcal{W}} L(w) \le \epsilon$$

Definitions

• Let h^* is the *Bayes optimal hypothesis*, over all functions from $\mathcal{X} \to \mathcal{Y}$.

$$h^* \in \operatorname{argmin}_h L(h)$$

• Let w* is the best in class hypothesis

$$\mathbf{w}^* \in \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}} L(\mathbf{w})$$

• Let w_n be the *empirical risk minimizer:*

$$w_n \in \operatorname{argmin}_{w \in \mathcal{W}} \hat{L}_n(w)$$

• Let \tilde{w}_n be what our algorithm returns.

Loss decomposition

Observe:

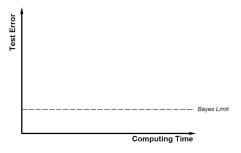
$$L(\tilde{w}_n) - L(h^*) = L(w^*) - L(h^*)$$
 Approximation error
 $+ L(w_n) - L(w^*)$ Estimation error
 $+ L(\tilde{w}_n) - L(w_n)$ Optimization error

- Three parts which determine our performance.
- Optimization algorithms with "best" accuracy dependencies on \hat{L}_n may not be best.

Forcing one error to decrease much faster may be wasteful.

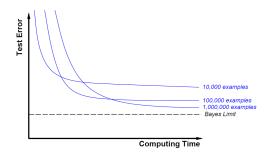
Time to a fixed accuracy

test error versus training time



Comparing sample sizes

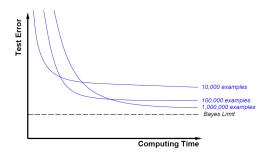
test error versus training time



• Vary the number of examples

Comparing sample sizes and models

test error versus training time



• Vary the number of examples

Optimal choices

test error versus training time



• Optimal combination depends on training time budget.

Estimation error: simplest case

Measuring a mean:

$$L(\mu) = \mathbb{E}(\mu - y)^2$$

The minima is at $\mu = \mathbb{E}[y]$.

- With *n* samples, the Bayes optimal estimator is the sample mean: $\hat{\mu}_n = \frac{1}{n} \sum_i y_i$.
- The error is:

$$\mathbb{E}[L(\hat{\mu}_n)] - L(\mathbb{E}[y]) = \frac{\sigma^2}{n}$$

 σ^2 is the variance and the expectation is with respect to the n samples.

• How many samples do we need for ϵ error?

Let's compare:

- SGD: Is $O(1/\epsilon)$ reasonable?
- GD: Is log 1/eps needed?
- SDCA/SVRG: These are also log 1/eps but much faster than GD (for large n).

Best in class error

- Fix a class W. What is the best estimator of w^* for this model?
- For a wide class of models (linear regression, logistic regression, etc), the ERM, w_n , is (in the limit) the best estimator:

$$w_n \in \operatorname{argmin}_{w \in \mathcal{W}} \hat{L}_n(w)$$

- **1** What is the generalization error of best estimator w_n ?
- 2 How well can we do? Note:

$$L(\tilde{w}_n) - L(w^*) = +L(w_n) - L(w^*)$$
 Estimation error $+L(\tilde{w}_n) - L(w_n)$ Optimization error

Can we generalize as well as the sample minimizer, w_n?
 (without computing it exactly)

Statistical Optimality

- Can generalize as well as the sample minimizer, w_n?
 (without computing it exactly)
- For a wide class of models (linear regression, logistic regression, etc), we have that the estimation error is:

$$\mathbb{E}[L(w_n)] - L(w^*) \stackrel{n \to \infty}{=} \frac{\sigma_{\text{opt}}^2}{n}$$

where $\sigma_{\rm opt}^2$ is an (optimal) problem dependent constant.

- This is the best possible statistical rate. (Can quantify the non-asymptotic "burn-in").
- What is the computational cost of achieving exactly this rate? say for large n?

Averaged SGD

SGD:

$$w_{t+1} \leftarrow w_t - \eta_t \nabla \operatorname{loss}(h(x, w_t), y)$$

- An (asymptotically) optimal algo:
 - Have η_t go to 0 (sufficiently slowly)
 - (iterate averaging) Maintain the a running average:

$$\overline{w_n} = \frac{1}{n} \sum_{t \le n} w_t$$

 (Polyak & Juditsky, 1992) for large enough n and with one pass of SGD over the dataset:

$$\mathbb{E}[L(\overline{w_n})] - L(w^*) \stackrel{n \to \infty}{=} \frac{\sigma_{\text{opt}}^2}{n}$$

Acknowledgements

Some slides from "Large-scale machine learning revisited", Leon Bottou 2013.