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Tradeoffs in Large Scale Learning.
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Tradeoffs in Large Scale Learning.

Many issues sources of “error”
approximation error: our choice of a hypothesis class
estimation error: we only have n samples
optimization error: computing exact (or near-exact) minimizers can
be costly.
How do we think about these issues?
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The true objective

hypothesis map x ∈ X to y ∈ Y.
have n training examples (x1, y1), . . . (xn, yn) sampled i.i.d. from D.
Training objective: have a set of parametric predictors
{h(x ,w) : w ∈ W},

min
w∈W

L̂n(w) where L̂n(w) =
1
n

n∑
i=1

loss(h(xi ,w), yi)

True objective: to generalize to D,

min
w∈W

L(w) where L(w) = E(X ,Y )∼Dloss(h(X ,w),Y )

Optimization: Can we obtain linear time algorithms to find an
ε-accurate solution? i.e. find ĥ so that

L(ŵ)− min
w∈W

L(w) ≤ ε
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Definitions

Let h∗ is the Bayes optimal hypothesis, over all functions from
X → Y.

h∗ ∈ argminhL(h)

Let w∗ is the best in class hypothesis

w∗ ∈ argminw∈WL(w)

Let wn be the empirical risk minimizer:

wn ∈ argminw∈W L̂n(w)

Let w̃n be what our algorithm returns.
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Loss decomposition

Observe:

L(w̃n)− L(h∗) = L(w∗)− L(h∗) Approximation error

+L(wn)− L(w∗) Estimation error

+L(w̃n)− L(wn) Optimization error

Three parts which determine our performance.
Optimization algorithms with “best” accuracy dependencies on L̂n
may not be best.
Forcing one error to decrease much faster may be wasteful.
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Time to a fixed accuracy

test error versus training time
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Comparing sample sizes

test error versus training time

• Vary the number of examples
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Comparing sample sizes and models

test error versus training time

• Vary the number of examples
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Optimal choices

test error versus training time

• Optimal combination depends on training time budget.

Good 
combinations
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Estimation error: simplest case

Measuring a mean:
L(µ) = E(µ− y)2

The minima is at µ = E[y ].
With n samples, the Bayes optimal estimator is the sample mean:
µ̂n = 1

n
∑

i yi .
The error is:

E[L(µ̂n)]− L(E[y ]) =
σ2

n

σ2 is the variance and the expectation is with respect to the n
samples.
How many samples do we need for ε error?
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Let’s compare:

SGD: Is O(1/ε) reasonable?
GD: Is log 1/eps needed?
SDCA/SVRG: These are also log 1/eps but much faster than GD
(for large n).
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Best in class error

Fix a classW. What is the best estimator of w∗ for this model?
For a wide class of models (linear regression, logistic regression,
etc), the ERM, wn, is (in the limit) the best estimator:

wn ∈ argminw∈W L̂n(w)

1 What is the generalization error of best estimator wn?
2 How well can we do? Note:

L(w̃n)− L(w∗) = +L(wn)− L(w∗) Estimation error

+L(w̃n)− L(wn) Optimization error

Can we generalize as well as the sample minimizer, wn?
(without computing it exactly)
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Statistical Optimality

Can generalize as well as the sample minimizer, wn?
(without computing it exactly)
For a wide class of models (linear regression, logistic regression,
etc), we have that the estimation error is:

E[L(wn)]− L(w∗) n→∞
=

σ2
opt

n

where σ2
opt is an (optimal) problem dependent constant.

This is the best possible statistical rate.
(Can quantify the non-asymptotic “burn-in”).
What is the computational cost of achieving exactly this rate? say for
large n?
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Averaged SGD

SGD:
wt+1 ← wt − ηt∇loss(h(x ,wt), y)

An (asymptotically) optimal algo:
Have ηt go to 0 (sufficiently slowly)
(iterate averaging) Maintain the a running average:

wn =
1
n

∑
t≤n

wt

(Polyak & Juditsky, 1992) for large enough n and with one pass of SGD
over the dataset:

E[L(wn)]− L(w∗) n→∞
=

σ2
opt

n
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