goal: find a d-dim parameter vector which minimizes the loss on n training examples.

- have n training examples $(x_1, y_1), \ldots (x_n, y_n)$
- have parametric a classifier $h(x, w)$, where w is d dimensional.

$$\min \sum_i \text{loss}(h(x_i, w), y_i)$$

“Big Data Regime”: How do you optimize this when n and d are large? memory? parallelization?

Can we obtain linear time algorithms?
Part 1: Least Squares

\[\min_w \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda \| w \|^2 \]

How much computation time is required to get \(\epsilon \) accuracy?

- \(n \) points, \(d \) dimensions.
- “Big Data Regime”: How do you optimize this when \(n \) and \(d \) are large?

Aside: think of \(x \) as a large feature representation.
\[
\min_w \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda \|w\|^2
\]

solution:

\[
w = (X^\top X + \lambda I)^{-1} X^\top Y
\]

where \(X\) be the \(n \times d\) matrix whose rows are \(x_i\), and \(Y\) is an \(n\)-dim vector.

time complexity: \(O(nd^2)\) and memory \(O(d^2)\)

Not feasible due to both time and memory.
Review: Gradient Descent (and Conjugate GD)

\[
\min_w \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda \|w\|^2
\]

- \(n\) points, \(d\) dimensions,
- \(\lambda_{\text{max}}, \lambda_{\text{min}}\) are eigs. of “design/data matrix”
- Computation time to get \(\epsilon\) accuracy:
 - Gradient Descent (GD):
 \[
 \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} nd \log \frac{1}{\epsilon}
 \]
 - Conjugate Gradient Descent:
 \[
 \sqrt{\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}} nd \log \frac{1}{\epsilon}
 \]
- memory: \(O(d)\)

Better runtime and memory, but still costly.