Parallelization; Large Scale Deep Learning

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

©Sham Kakade 2017

1

The limitation of GPU

- Speed-up is small when the model doesn't fit in the GPU memory
- Model parallelization: for dealing with large models.

Can just toss all the ingredients in...

- Asynchronous updating...
- Model parallellization/Data Parallelization
- Mini-batching...
- Hope for the best??
- Two methods: DistBelief
 - (1) Downpour SGD
 - (2) Sandbalster L-BFGS

Downpour SGD

- A variant of asynchronous stochastic gradient descent
- Divide the training data into a number of subsets and run a copy of the model on each of these subset
- Update the derivatives through a centralized parameter server
- Two asynchronous aspects: model replicas run independently and parameter shards run independently

Acknowledgments

· Some slides modified from:

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiyr5eVr_jTAhUT5GMKHfOOCBYQFggnMAA&url=http%3A%2F%2Fweb.cs.ucla.edu%2Fclasses%2Fspring16%2Fcs239%2FCS239%2520Lecture%252015.pptx&usg=AFQjCNH8OCcAB5rig-

Btq1fUvsIEVz5uDg&sig2=LUAxGWzQTjJqi3IEibamMA

©Sham Kakade 2017