
Parallelization in the “Big Data” Regime 5:
Data Parallelization?

Sham M. Kakade

Machine Learning for Big Data
CSE547/STAT548

University of Washington

S. M. Kakade (UW) Optimization for Big data 1 / 23

Announcements...

HW 3 posted
Projects: the term is approaching the end.... (summer is coming!)

Today:
Review: Adaptive gradient methods
Parallelization: how do we parallelize in the “big data” regime?

S. M. Kakade (UW) Optimization for Big data 2 / 23

Parallelization Overview

Basic question: How can we do more operations “simultaneously” so
that our overall task finishes more quickly?
Issues:
1 Break up computations on: single machine vs. cluster
2 Breakup up: Models or Data

Model parallelization or Data parallelization?
3 Asynchrony?

What are good models to study these issues?
communication complexity, serial complexity, total computation, ??

S. M. Kakade (UW) Optimization for Big data 3 / 23

1: One machine or a cluster?

One machine:
Certain operations are much faster to do when specified without “for
loops”: matrix multiplications, convolutions, Fourier transforms,
“parallelize” by structuring computations to take advantage of this: e.g.
for larger matrix multiplies
GPUs!!!
Why one machine?
Shared memory/communication is fast! Try to take advantage of fast
“simultaneous” operations.

Cluster:
Why? One machine can only do so much.
Try to (truly) breakup computations to be done.
Drawbacks: Communication is costly!
Simple method: run multiple jobs with different parameters.

S. M. Kakade (UW) Optimization for Big data 4 / 23

2: Data Parallelization vs. Model parallelization

Data parallelization:
Breakup data into smaller chunks to process.

Mini-batching, batch gradient descent
Averaging

Model parallelization:
Breakup up your model.

Try to update parts of model in a distributed manner.
Coordinate ascent methods
Update layers of a neural net on different machines.

Other issues:
Asynchrony

S. M. Kakade (UW) Optimization for Big data 5 / 23

Issues to consider...

Work: the over all compute time.
Depth: the serial runtime.
Communication: between machines?
Error: terminal error.
Memory: how much do we need?

S. M. Kakade (UW) Optimization for Big data 6 / 23

Mini-batching (Data Parallelization)

stochastic gradient computation: at iteration t , compute:

wt+1 ← wt − η∇̂`(wt)

where E∇̂`(w) = ∇L(w).
mini-batch SGD: using batch size b:

wt+1 ← wt − ηb

1
b

b∑
j=1

∇̂`j(wt)


where ηb is our learning rate.
How much does this help?
It clearly reduces the variance.

S. M. Kakade (UW) Optimization for Big data 7 / 23

How much does mini-batching help?

Let’s consider the regression/square loss case.
w t = E[wt] is the expected iterate at iteration t .
Parameter decomposition

wt − w∗ = wt − w t︸ ︷︷ ︸
"Variance"

+(w t − w∗)︸ ︷︷ ︸
Bias

mini-batch SGD: using batch size b:

wt+1 ← wt − ηb

1
b

b∑
j=1

∇̂`j(wt)


where ηb is our learning rate.
How much does this help?
Bias? Variance?

S. M. Kakade (UW) Optimization for Big data 8 / 23

Variance reduction with b?

Variance term (as a function of the mini-batch size):

‖wt − w t‖2 ≈ O(1/b)

This means with mini-batch size of b, the contribution to the error is
O(b) times less, as compared to using b = 1 (with the same number
of iterations)
However: as long as the Bias ≥ Variance, then no point in trying to
make the Variance term smaller.

How much does mini-batching help the bias?

S. M. Kakade (UW) Optimization for Big data 9 / 23

Bias reduction with b?

As b →∞, do we continue to expect improvements to the Bias?
For large enough b, we are just doing batch/exact gradient descent:

wt+1 ← wt − η∇L(wt)

What happens in between b = 1 and b →∞?
Define η∗b as the maximal learning rate (again for the square loss
case) that you can use before divergence.
Theorem: The maximal learning rate strictly increases with η∗b.

S. M. Kakade (UW) Optimization for Big data 10 / 23

The “critical” batch size b

Let b̃ be the critical b in which η∗b is η∗∞/2.
Theorem: For every square loss problem, in comparison to b = 1
(SGD), we have:

‖w t+1 − w∗‖ ≤ exp(−γb)‖w t − w∗‖

When b ≤ b̃, the Bias contraction γb linearly increases with b.
When b ≥ b̃, γb is within a factor of 2 times γ∞.

S. M. Kakade (UW) Optimization for Big data 11 / 23

How much can you mini-batch?

Let b̃ be the critical b in which η∗b is η∗∞/2.
Theorem: Suppose ‖x‖2 ≤ L (almost surely) and λmax is the
maximal eigenvalue of E[xx>]. Then:

E[‖x‖2]
λmax

≤ b̃ ≤ L
λmax

(for not very kurtotic distributions, L ≈ E[‖x‖2).
How big is b̃ in practice?
(The above are really exact expressions for every problem). In one
dimension:

b̃ =
E[x4]

(E[x2])2

S. M. Kakade (UW) Optimization for Big data 12 / 23

Putting it all together

Comparing to b = 1, with mini-batching, you can get the same error
with:

Depth: reduce the serial run-time by a factor of b̃.
Work: keep the over all compute time the same.
Communication: need average b̃ parameters, per update.

Initially, above b̃ mini-batching is useless.
Asymptotically (for large enough iterations t , when the Bias becomes
smaller than the variance), mini-batching more is always helpful.
Practice/Punchline?? b̃ is often not all that large for natural
problems.This favors the “GPU” model on one machine.

S. M. Kakade (UW) Optimization for Big data 13 / 23

Extra Slide

S. M. Kakade (UW) Optimization for Big data 14 / 23

Extra Slide

S. M. Kakade (UW) Optimization for Big data 15 / 23

Is it general?

Claims were only made for SGD in the square loss case.
How general are these ideas? the non-convex case?
Empirically, we often go with a “GPU model” where we max out our
mini-batch size.

S. M. Kakade (UW) Optimization for Big data 16 / 23

Mini-batching: Neural Net training on Mnist

0 1 2 3 4 5 6
Depth #105

0.15

0.5

1

2

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

1 2 5 10 20 100 200

Depth: The number of serial iterations.
Work: Depth ⊗ the mini-batch size.

S. M. Kakade (UW) Optimization for Big data 17 / 23

Neural Net Learning rates vs. batch size

The ’maximal’ learning rate as a function of the batch size.
Found with a crude grid search.

S. M. Kakade (UW) Optimization for Big data 18 / 23

Neural Net Learning rates vs. batch size

The ’maximal’ learning rate as a function of the batch size.
Found with a crude grid search.

S. M. Kakade (UW) Optimization for Big data 19 / 23

Neural Net: Test error vs. batch size

0 1 2 3 4 5 6
Depth #105

1.4

2

3

4

5

6
C

la
ss

ifi
ca

tio
n

E
rr

or
 (

%
)

1 2 5 10 20 100 200

Subtle issues in non-convex optimization.
More overfitting seen here with larger bath sizes.
unclear how general this is.
for this case, we were too aggressive with the learning rates.

S. M. Kakade (UW) Optimization for Big data 20 / 23

Averaging

With “mini-batching”, our presentation suggests you might as well
just use a single machine with mini-batching.
What can we do with multiple machines?
In the convex case:

Breakup your data on multiple machines
(Must still have “enough” data on each machine.)
Run (mini-batch) SGD separately on each machine separately.
Communicate each machines anser to a central “parameter server”, and
(by convexity) average the final answer from each machine.
Then can repeat.

S. M. Kakade (UW) Optimization for Big data 21 / 23

Averaging: How good is it?

Question: What if there isn’t enough data on each machine?
How much data do we need on each machine?
Roughly, we need κ data points per machine.
Theorem: With “enough” data on each machine, then one can just
run one pass of SGD separately on each machine and then average
their answers. This will be optimal statistically (e.g. in terms of
generalization).

S. M. Kakade (UW) Optimization for Big data 22 / 23

Hogwild

S. M. Kakade (UW) Optimization for Big data 23 / 23

