Case Study 2: Document Retrieval

Locality-Sensitive Hashing Random Projections for NN Search

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 18, 2017

©Sham Kakade 2017

1

Announcements:

- HW2 posted
- Project Milestones
 - Start early
 - Lit. review (>= 3 papers read carefully)
 - First rounds of experiments
- Today:
 - Review: ball trees, cover trees
 - Today: locality sensitive hashing

©Kaka@e 2017

Case Study 2: Document Retrieval

Task Description: Finding Similar Items

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 13, 2017

©Sham Kakade 2017

Where is FAST similarity search important?

I web Secret

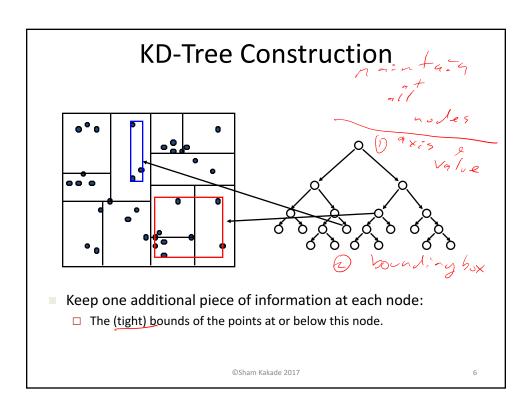
I mage seach

Sky maps //ecation

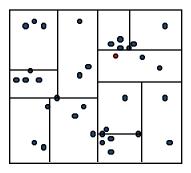
Shazam / song identitication

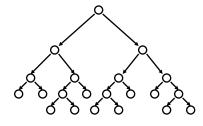
Physics simulators

- Robotics



Nearest Neighbor with KD Trees



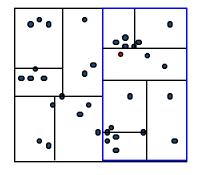


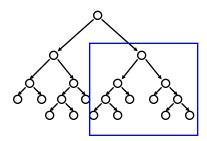
Traverse the tree looking for the nearest neighbor of the query point.

©Sham Kakade 2017

7

Nearest Neighbor with KD Trees

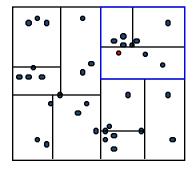


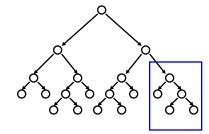


- Examine nearby points first:
 - ☐ Explore branch of tree closest to the query point first.

©Sham Kakade 2017

Nearest Neighbor with KD Trees



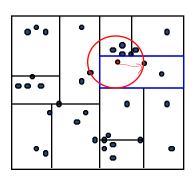


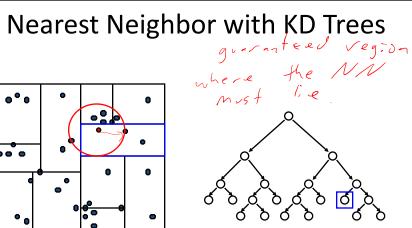
- Examine nearby points first:
 - ☐ Explore branch of tree closest to the query point first.

©Sham Kakade 2017

9

Nearest Neighbor with KD Trees you has a long with Mintance long with Mintance Nearest Neighbor with KD Trees you has a long with Mintance lo



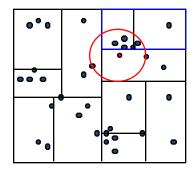


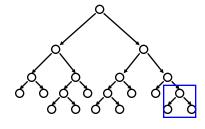
- When we reach a leaf node:
 - □ Compute the distance to each point in the node.

©Sham Kakade 2017

11

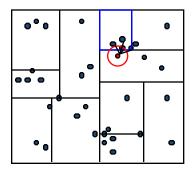
Nearest Neighbor with KD Trees

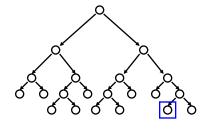




Then backtrack and try the other branch at each node visited

Nearest Neighbor with KD Trees



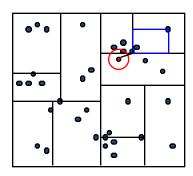


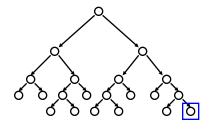
Each time a new closest node is found, update the distance bound

©Sham Kakade 2017

13

Nearest Neighbor with KD Trees

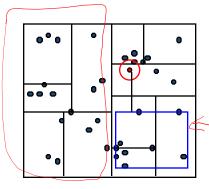


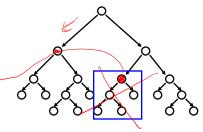


- Using the distance bound and bounding box of each node:
 - ☐ Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

Nearest Neighbor with KD Trees



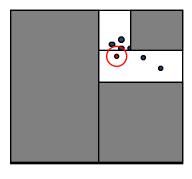


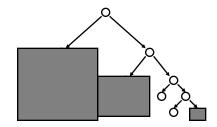
- Using the distance bound and bounding box of each node:
 - □ Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

15

Nearest Neighbor with KD Trees





- Using the distance bound and bounding box of each node:
 - ☐ Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

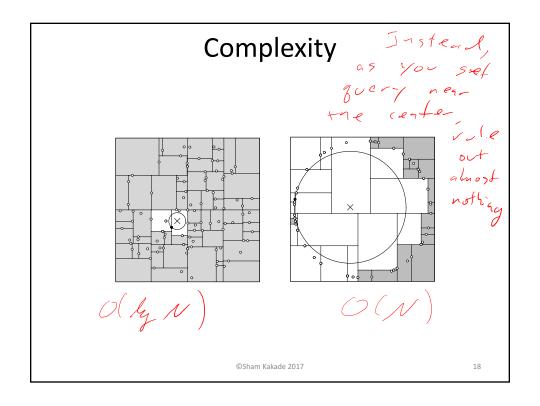
Complexity

- For (nearly) balanced, binary trees...
- Construction
 - □ Size: (\(\sqrt{} \)
 - □ Depth:
- (it can (balance) O(lyN)
 - ☐ Median + send points left right:
 - \Box Construction time: \bigcirc (\mathcal{N} $\mathbb{L}_{\mathcal{S}}\mathcal{N}$)
- 1-NN query
 - 1-NN query

 ☐ Traverse down tree to starting point: lug (N)
 - ☐ Maximum backtrack and traverse:
 - □ Complexity range:

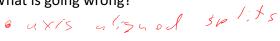
Under some assumptions on distribution of points, we

get O(logN) but exponential in d (see citations in reading)



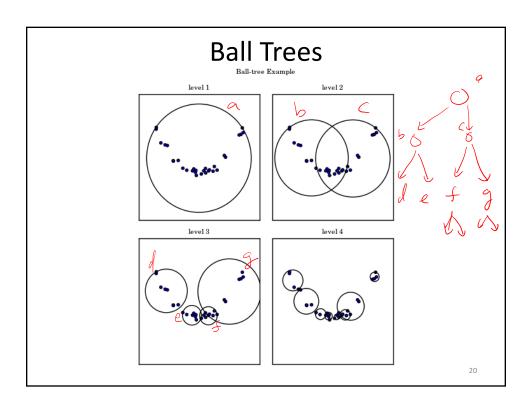
What about NNs searches in high dimensions?

- KD-trees:
 - ☐ What is going wrong?



- ☐ Can this be easily fixed?
- What do have to utilize?
 - ☐ utilize triangle inequality of metric
 - ☐ New ideas: ball trees and cover trees

©Sham Kakade 2017



Ball Tree Construction

- Node:
 - □ Every node defines a ball (hypersphere), containing
 - a subset of the the points (to be searched)
 - A center
 - A (tight) radius of the points
- Construction:
 - ☐ Root: start with a ball which contains all the data
 - □ take a ball and make two children (nodes) as follows:
 - Make two spheres, assign each point (in the parent sphere) to its closer sphere
 - Make the two spheres in a "reasonable" manner

©Sham Kakade 2017

21

Ball Tree Search

- Given point x, how do find its nearest neighbor quickly?
- Approach:
 - ☐ Start: follow a greedy path through the tree
 - ☐ Backtrack and prune: rule out other paths based on the triange inequality
 - (just like in KD-trees)

How good is it?

☐ Practice: ▷^<

☐ Guarantees:

est

for exact

VN-searchas

©Sham Kakade 2017

Cover trees

- What about exact NNs in general metric spaces?
- Same Idea: utilize triangle inequality of metric (so allow for arbitrary metric)
- What does the dimension even mean?
- cover-tree idea: etabit the structure

©Sham Kakade 2017

Intrinsic Dimension

How does the volume grow, from radius R to 2R?

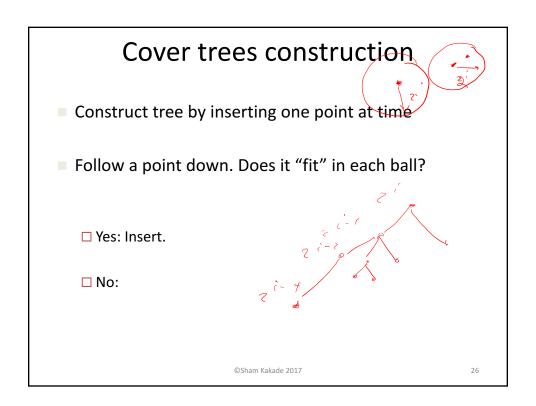
$$Vol(\beta_n | l_n) = 2$$

Can we relax this idea to get at the "intrinsic"

dimension?

$$\frac{1}{1} = \frac{1}{1} = \frac$$

Cover trees: data structure					
■ Ball Trees: each node had associated □ Center: □ (tight) Radius: □ Points:	1				
■ Cover trees: □ Center: a point if the lateset □ (tight) Radius: □ Points: keep points in the ball.					
©Sham Kakade 2017	25				



Cover Tree Complexity

Construction 7°

☐ Size:

□ Construction time: 7

1-NN query:

☐ Check all paths with triangle.

☐ Maximum time complexity:

 \blacksquare Under assumptions that "doubling dimension" is $\widetilde{\mathsf{D}}$.

Provable method for datastructure construction.

©Sham Kakade 2017

27

Wrapping Up – Important Points

kd-trees

- Tons of variants
 - □ On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g.,cover trees, ball trees,...)

Nearest Neighbor Search

Distance metric and data representation are crucial to answer returned

For both...

- High dimensional spaces are hard!
 - $\hfill\square$ Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... $N >> 2^d$... Typically useless.
 - □ Ball Trees and Cover Trees more effective here!

©Sham Kakade 2017

What you need to know

- Document retrieval task
 - □ Document representation (bag of words), tf-idf
 - ☐ Also, think about image search!
- Nearest neighbor search
 - □ Formulation
 - ☐ Different distance metrics and sensitivity to choice
 - ☐ Challenges with large N, d
- kd-trees for nearest neighbor search
 - Construction of tree
 - □ NN search algorithm using tree
 - ☐ Complexity of construction and query
 - ☐ Challenges with large d

©Sham Kakade 2017

29

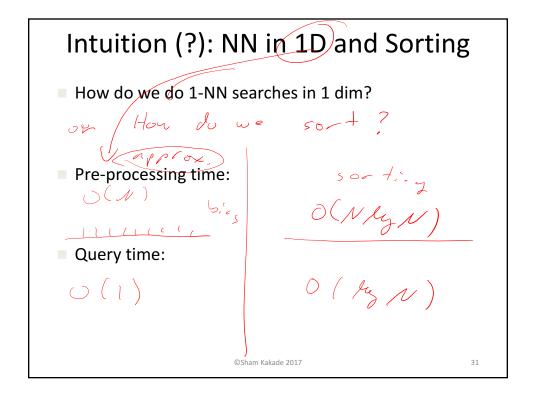
Case Study 2: Document Retrieval

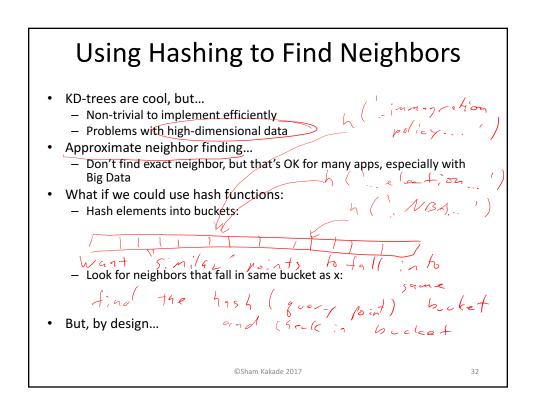
Locality-Sensitive Hashing Random Projections for NN Search

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

April 18, 2017

©Sham Kakade 2017





What to hash?

- Before: we were hashing 'words'/strings
- Remember, we can think of hash functions abstractly:

• Idea of LSH: try to has similar items into same buckets and different items into different buckets

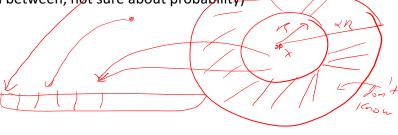
©Sham Kakade 2017

33

Locality Sensitive Hashing (LSH)

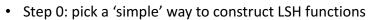
- Suppose we have a set of functions H and a distribution over these functions.
- A LSH family H satisfies (for example), for some similarity function *d*, for *r*>0, α>1, 1>P1,P2>0:
 - $-d(x,x') \le r$, then $Pr_H(h(x)=h(x'))$ is high, with prob>P1
 - $-d(x,x') > \alpha.r$, then $Pr_H(h(x)=h(x'))$ is low, with probl<P2

- (in between, not sure about probability)



©Sham Kakade 2017

LSH: basic paradigm



• Step 1: (amplification) make another hash function by

repeating this construction ϕ (\times) = (ψ , (\times)

bucket.

Step 3: use multiple hash tables. for recall, search for similar items in the same buckets. $\phi^{(r)}$ have 6 4754 to 5/05.

©Sham Kakade 2017

35

Example: hashing binary strings

- Suppose x and x' are binary strings
- Hamming distance metric |x-x'|
- What is a simple family of hash function?

h''(X) = X:

Suppose |x-x'| are R close, what is P1?

P1 = 1- R/d

• Suppose |x-x'|> what is P2?

P2 = 1- 2R

Amplification ench of

- Improving P1 and P2

Now the hash function is:
$$\phi = \left(h_{1}(X) + h_{2}(X) + \cdots + h_{K}(X) \right)$$

$$\vdots$$

$$\psi = \left(h_{1}(X) + h_{2}(X) + \cdots + h_{K}(X) \right)$$

$$\vdots$$

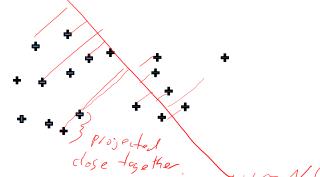
$$\psi = \left(h_{1}(X) + h_{2}(X) + \cdots + h_{K}(X) \right)$$

• The choice p is a parameter.

©Sham Kakade 2017

37

Review: Random Projection Illustration



- Pick a random vector v:
 - Independent Gaussian coordinates

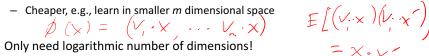
- Preserves separability for most vectors
 - Gets better with more random vectors

Multiple Random Projections: Approximating Dot Products

- Pick m random vectors v(i):
 - Independent Gaussian coordinates

Vir Vn VirNOI)

- Approximate dot products:

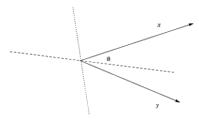


- - N data points, approximate dot-product within ε>0:

But all sparsity is lost

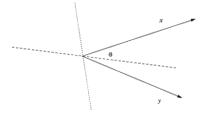
©Sham Kakade 2017

LSH Example function: Sparser Random **Projection for Dot Products**



- Pick random vector v
- Simple 0/1 projection: h(x) = Sy (V, X)
- Now, each vector is approximated by a single bit $\phi(x) = (h_{-1}(x)) + h_{-1}(x)$ • This is an LSH function, though with poor α and P2

LSH Example continued: Amplification with multiple projections



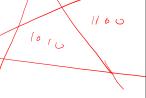
- Pick random vectors v⁽ⁱ⁾
- Simple 0/1 projection: $\phi_i(x) =$
- · Now, each vector is approximated by a bit-vector
- Dot-product approximation:

©Sham Kakade 2017

41

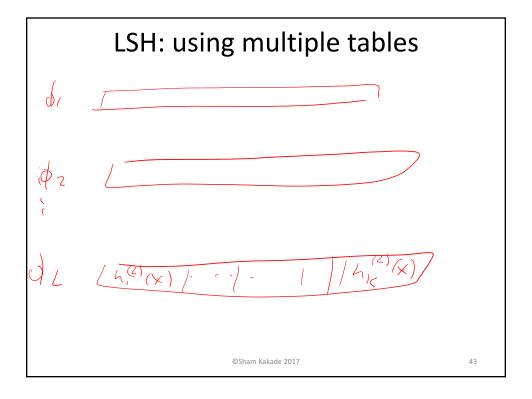
LSH for Approximate Neighbor Finding

· Very similar elements fall in exactly same bin:



- And, nearby bins are also nearby:
- Simple neighbor finding with LSH:
 - For bins b of increasing hamming distance to $\phi(x)$:
 - Look for neighbors of x in bin b
 - Stop when run out of time
- Pick m such that N/2^m is "smallish" + use multiple tables

©Sham Kakade 2017



NN complexities

	Query time	Space used	Preprocessing time
Vornoi	$O(2^d \log n)$	$O(n^{d/2})$	$O(n^{d/2})$
Kd-tree	$O(2^d \log n)$	O(n)	$O(n \log n)$
LSH	$O(n^{\rho} \log n)$	$O(n^{1+\rho})$	$O(n^{1+\rho}\log n)$

©Sham Kakade 2017

Hash Kernels: Even Sparser LSH for Learning

- Two big problems with random projections:
 - Data is sparse, but random projection can be a lot less sparse
 - You have to sample m huge random projection vectors
 - And, we still have the problem with new dimensions, e.g., new words
- Hash Kernels: Very simple, but powerful idea: combine sketching for learning with random projections
- Pick 2 hash functions:
 - h: Just like in Count-Min hashing
 - $-\xi$: Sign hash function
 - · Removes the bias found in Count-Min hashing (see homework)
- Define a "kernel", a projection ϕ for x:

©Sham Kakade 2017

45

Hash Kernels, Random Projections and Sparsity

$$\phi_i(\mathbf{x}) = \sum_{j:h(j)=i} \xi(j)\mathbf{x}_j$$

- Hash Kernel as a random projection:
- What is the random projection vector for coordinate i of ϕ_i :
- Implicitly define projection by h and ξ, so no need to compute apriori and automatically deals with new dimensions
- Sparsity of ϕ , if x has s non-zero coordinates:

©Sham Kakade 2017

What you need to know

- Locality-Sensitive Hashing (LSH): nearby points hash to the same or nearby bins
- LSH uses random projections
 - Only $O(\log N/\epsilon^2)$ vectors needed
 - But vectors and results are not sparse
- Use LSH for nearest neighbors by mapping elements into bins
 - Bin index is defined by bit vector from LSH
 - Find nearest neighbors by going through bins
- · Hash kernels:
 - Sparse representation for feature vectors
 - Very simple, use two hash functions
 - Can even use one hash function, and take least significant bit to define $\boldsymbol{\xi}$
 - Quickly generate projection $\phi(x)$
 - Learn in projected space

©Sham Kakade 2017