Case Study 2: Document Retrieval

Locality-Sensitive Hashing

Random Projections

for NN Search

Machine Learning for Big Data
CSE547/STAT548, University of Washington

©Sham Kakade 2017

Sham Kakade
April 18, 2017

1

Announcements:

* HW2 posted
* Project Milestones
— Start early

— Lit. review (>= 3 papers read carefully)
— First rounds of experiments

* Today:
— Review: ball trees, cover trees
— Today: locality sensitive hashing

OKakade 2017

4/17/17

Case Study 2: Document Retrieval

Task Description:
Finding Similar ltems

Machine Learning for Big Data
CSE547/STAT548, University of Washington
~L Sham Kakade
April 13, 2017

©Sham Kakade 2017 3

Where is FAST similarity search important?
YV 0(/7 Se< ¢ .
ceac b

| Mﬁg(

/(//y /\/\oq/g //o"/a%?(cocj

&

VY

< j% T LA ey / 50’1; ,‘%@4 %{‘-ﬁ(‘(ﬁ 7/9%
o p 5,7/§}Yr5‘ e ule oo s
Ceobetic s

4/17/17

1-Nearest Neighbor
Articles = Xf {X >(5

X e
Query:
X
1-NN)
DGoaI:/{_;,\J v o e %\X “CS’?$—7Z ’
X e

O Formulation: \ 0/(>< ><>

WA eI

>< € ><5€/>(\><

©Sham Kakade 2017 5

KD-Tree Construction. /.

e

2

wl

‘/\‘)(/(-es

e H.)\w

R — AN A
. Ej ¢ bofg?fbb O?’b

@ \OOL/M/(;) édx

Keep one additional piece of information at each node:
O The (tight) bounds of the points at or below this node.

©Sham Kakade 2017 6

4/17/17

4/17/17

Nearest Neighbor with KD Trees

eo o o - o/\
e A
N ..:_.') AR d,d’\b\b d,d’\b\b o1 c’\b\c

se the tree looking for the nearest neighbor of the query

point.

©Sham Kakade 2017

Examine nearby points first:
[0 Explore branch of tree closest to the query point first.

©Sham Kakade 2017

Nearest Neighbor with KD Trees

B BN

ey B IR N G N

e . d/\bd’d/‘b\bd’d‘b\b SfRe

@)

O 1
o

Examine nearby points first:
O Explore branch of tree closest to the query point first.

©Sham Kakade 2017 9

Nearest Neighbor with KD Trees
+

o LAS -

"\, /O”\

W[*b\ o
9 %;Wlﬁ”\c

o)
o b4 /
° o) o)

. A NAN

° O
(PR R} d,d’\b\b d’d/\b\b 3 d’\b\b

jo(< 7% W
be -
When we reach a leaf node: Aaie “ €9
’h‘t fs [7

0 Compute the distance to each point in the node. Qo P P

©Sham Kakade 2017 10

4/17/17

Nearest Neighbor with KD Trees

ﬁu”/”l’l <= \/ijc)’\

V\/[«(~L /ﬂ\e ﬂ/ﬂ
0% e ° /s f [
o® O,
eo o .< 1\47 ° O/ \O
Pt e LN
S L AR ER

When we reach a leaf node:
0 Compute the distance to each point in the node.

©Sham Kakade 2017 11

Nearest Neighbor with KD Trees

N (e BZaN
s BN ELH P N
. . ..:_. _ iR d,o’\b‘b d,d’\b\b d 5;3%

Then backtrack and try the other branch at each node visited

©Sham Kakade 2017 12

4/17/17

Nearest Neighbor with KD Trees

Tl AL

o0 .. _ : : /Ox / \
S ofRe d,cs’\b‘b d’d/\b\b of @\b‘b

Each time a new closest node is found, update the distance

bound_—

©Sham Kakade 2017

Nearest Neighbor with KD Trees

o [T N
e B O N
J e L A

Using the distance bound and bounding box of each node:
[0 Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

14

4/17/17

Nearest Neighbor with KD Trees

N A\,

ofRe d,d’\b\f $ d’\b\b

Using the distance bound and bounding box of each node:
[Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017 15

Nearest Neighbor with KD Trees

Using the distance bound and bounding box of each node:
[0 Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017 16

4/17/17

Complexity
For (nearly) balanced, binary trees...
Construction
O Size: 3

ﬁL e
[balaace)

[J Depth: O///V>//)

0 Median + send points left right:

O Construction time: O (////} A/)
1-NN query |
?67[“'ocjf

[Traverse down tree to statting-point: /@v} (1 >

0 Maximum backtrack and traverse: (

[0 Complexity range: /V>

oy) s > ol)
Under some assumptions on distribution of points, we
get O(logN) but exponential in d (see citations in reading)

©Sham Kakade 2017 17

Complexity - /<=
6z Vee ssef

204/7 n eq -

e (ZﬁlJ/

-

i — oo le
T, I : ot
J_‘% ﬁmo)oL

e L
B)
e o)

©Sham Kakade 2017 18

4/17/17

What about NNs searches
in high dimensions?

KD-trees:
[0 What is going wrong?
- ’ f / %f
é U ¥Xrs V//”jtﬂo/ S
[Can this be easily fixed?
What do have to utilize?
[J utilize triangle inequality of metric
[0 New ideas: ball trees and cover trees
©Sham Kakade 2017 19
Ball Trees
Ball-tree Example
level 1 level 2 O Q
Z \o C
/ cl
L 6 1o}
VANAN
I o + ?
level 3 level 4 d\\; V\)

20

4/17/17

10

Ball Tree Construction

Node:

[Every node defines a ball (hypersphere), containing
a subset of the the points (to be searched)
A center
A (tight) radius of the points
Construction:
[J Root: start with a ball which contains all the data
[take a ball and make two children (nodes) as follows:

Make two spheres, assign each point (in the parent
sphere) to its closer sphere

Make the two spheres in a “reasonable” manner

©Sham Kakade 2017 21

Ball Tree Search

Given point x, how do find its nearest neighbor quickly?

Approach:
[] Start: follow a greedy path through the tree
1 Backtrack and prune: rule out other paths based on the
triange inequality

(just like in KD-trees)
L\EPQ /(<m/19ﬂ5(§\h"j\7‘?

r\/\

. , o1 lose
How good is it? ~ woesT e «se i fj” 7[%
Cs o bad
O Guarz?mtees: o besd P ¢ xac +
[Practice: =~ ¢ ° Vi—seari,

©Sham Kakade 2017 22

4/17/17

11

Cover trees

What about exact NNs in general metric spaces?

Same ldea: utilize triangle inequality of metric (so
allow for arbitrary metric)

What does the dimension even mean?

cover-tree idea: 7, /o0

©Sham Kakade 2017

/'Lé/e 574/_L\}u,\2
R L T -

Intrinsic Dimension

How does the volume grow, from radius R to 2R?

\/of ﬁq//zmﬁ B 2 o
— T (6,

Can we relax this idea to get at the “intrinsic”
dimension?

[This is the “doubling” dimension:

©Sham Kakade 2017

24

4/17/17

12

Cover trees: data structure

Ball Trees: each node had associated
1 Center:

[J (tight) Radius:

1 Points:

Cover trees:
O Center:
[(tight) Radius:
O Points:

©Sham Kakade 2017

Cover Tree Complexity

Construction

[Size:

[Construction time:

1-NN query:

1 Check all paths with triangle.
[Maximum time complexity:

Under assumptions that “doubling dimension” is D.
Provable method for datastructure construction.

©Sham Kakade 2017

26

4/17/17

13

Wrapping Up — Important Points

kd-trees
Tons of variants

O On construction of trees (heuristics for splitting, stopping, representing branches...)

00 Other representational data structures for fast NN search (e.g.,cover trees, ball
trees,...)

Nearest Neighbor Search

Distance metric and data representation are crucial to answer returned

For both...
High dimensional spaces are hard!

0 Number of kd-tree searches can be exponential in dimension
Rule of thumb... N >>29... Typically useless.
0 Ball Trees and Cover Trees more effective here!

©Sham Kakade 2017 27

What you need to know

Document retrieval task
[0 Document representation (bag of words), tf-idf
[Also, think about image search!
Nearest neighbor search
[0 Formulation
[Different distance metrics and sensitivity to choice
[1 Challenges with large N, d
kd-trees for nearest neighbor search
[Construction of tree
[J NN search algorithm using tree

1 Complexity of construction and query
[Challenges with large d

©Sham Kakade 2017 28

4/17/17

14

Case Study 2: Document Retrieval

Locality-Sensitive Hashing
Random Projections
for NN Search

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Sham Kakade

April 18, 2017

Intuition (?): NN i and Sorting
How do we do 1-NN searches in 1 dim?

O P gﬁ//L ,7
Pre-processing time: Som 4.
Ol -
- o ol

Lt Uy ’ /ZZ%/¢/i)

Query time:

O (1) O S)

©Sham Kakade 2017 30

4/17/17

15

Using Hashing to Find Neighbors

KD-trees are cool, but...
— Non-trivial to implement efficiently
— Problems with high-dimensional data
Approximate neighbor finding...

— Don't find exact neighbor, but that’s OK for many apps, especially with
Big Data

What if we could use hash functions:
— Hash elements into buckets:

— Look for neighbors that fall in same bucket as x:

But, by design...

©Sham Kakade 2017 31

What to hash?

Before: we were hashing ‘words’/strings

Remember, we can think of hash functions abstractly:

Idea of LSH: try to has similar items into same buckets
and different items into different buckets

©Sham Kakade 2017 32

4/17/17

16

Locality Sensitive Hashing (LSH)

* Suppose we have a set of functions H and a distribution over
these functions.

* A LSH family H satisfies (for example), for some similarity
function d, for r>0, a>1, 1>P1,P2>0:

— d(x,x") £ r, then Pry(h(x)=h(x’)) is high, with prob>P1
— d(x,x’) > a.r, then Pry (h(x)=h(x")) is low, with probl<P2
— (in between, not sure about probability)

©Sham Kakade 2017

LSH: basic paradigm

* Step 0: pick a ‘simple’ way to construct LSH functions

* Step 1: (amplification) make another hash function by
repeating this construction

* Step 2: the output of this function specifies the index to a
bucket.

* Step 3: use multiple hash tables. for recall, search for similar
items in the same buckets.

©Sham Kakade 2017

4/17/17

17

Example: hashing binary strings
* Suppose x and x’ are binary strings

* Hamming distance metric |x-x’|
* What is a simple family of hash function?

* Suppose |x-x’| are R close, what is P1?

* Suppose |x-x"|>cR, whatis P2?

©Sham Kakade 2017

Amplification

* Improving P1 and P2
* Now the hash function is:

* The choice mis a parameter.

©Sham Kakade 2017

4/17/17

18

Review: Random Projection lllustration

+'|'
s * + +
++'|' 'I-+
+ o+
-|-,,,'|' +
+

* Pick a random vector v:
— Independent Gaussian coordinates

* Preserves separability for most vectors
— Gets better with more random vectors

©Sham Kakade 2017 37

Multiple Random Projections:
Approximating Dot Progucts

e Pick m random vectors v(i): . + * :
— Independent Gaussian coordinates * ® -
+ +
+ 45 * +
* Approximate dot products: +

— Cheaper, e.g., learn in smaller m dimensional space

* Only need logarithmic number of dimensions!
— N data points, approximate dot-product within £>0:

— <log2N>
€

* But all sparsity is lost

©Sham Kakade 2017

4/17/17

19

LSH Example function: Sparser Random
Projection for Dot Products

* Pick random vector v
* Simple 0/1 projection: h(x) =

* Now, each vector is approximated by a single bit

* This is an LSH function, though with poor a and P2

©Sham Kakade 2017

LSH Example continued: Amplification with
multiple projections

¢ Pick random vectors vi!
* Simple 0/1 projection: ¢;(x) =

* Now, each vector is approximated by a bit-vector

* Dot-product approximation:

©Sham Kakade 2017 40

4/17/17

20

LSH for Approximate Neighbor Finding

* Very similar elements fall in exactly same bin:

* And, nearby bins are also nearby:

¢ Simple neighbor finding with LSH:

— For bins b of increasing hamming distance to ¢(x):
* Look for neighbors of x in bin b

— Stop when run out of time

* Pick m such that N/2m is “smallish” + use multiple tables

©Sham Kakade 2017 41

LSH: using multiple tables

©Sham Kakade 2017 42

4/17/17

21

NN complexities

Query time |Space Preprocessing
used time

Vornoi 0(2d logn) O(ndlz) O(ndlz)

Kd-tree O(Zd log n) O(n) O(nlogn)

LSH O(np log n) O(n“p) O(n“p log n)

©Sham Kakade 2017

Hash Kernels: Even Sparser LSH
for Learning

Two big problems with random projections:

— Data is sparse, but random projection can be a lot less sparse

— You have to sample m huge random projection vectors
* And, we still have the problem with new dimensions, e.g., new words

Hash Kernels: Very simple, but powerful idea: combine sketching for
learning with random projections

Pick 2 hash functions:
— h: Just like in Count-Min hashing

— & Sign hash function

* Removes the bias found in Count-Min hashing (see homework)

Define a “kernel”, a projection ¢ for x:

©Sham Kakade 2017

44

4/17/17

22

Hash Kernels, Random Projections
and Sparsity

pi(x) = D EG)x
J:h(j)=i
Hash Kernel as a random projection:

What is the random projection vector for coordinate i of ¢:

Implicitly define projection by h and &, so no need to compute apriori and
automatically deals with new dimensions

Sparsity of ¢, if x has s non-zero coordinates:

©Sham Kakade 2017 45

What you need to know

Locality-Sensitive Hashing (LSH): nearby points hash to the same or
nearby bins

LSH uses random projections

— Only O(log N/€?) vectors needed

— But vectors and results are not sparse

Use LSH for nearest neighbors by mapping elements into bins

— Binindex is defined by bit vector from LSH

— Find nearest neighbors by going through bins

Hash kernels:

— Sparse representation for feature vectors

Very simple, use two hash functions
* Can even use one hash function, and take least significant bit to define §

Quickly generate projection ¢(x)
Learn in projected space

©Sham Kakade 2017 46

4/17/17

23

