Case Study 1: Estimating Click Probabilities
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Gradient Descent + SGD
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* Project Proposals: due this Friday! M W ‘
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— One page

* HW1 posted teday. - OS5F 2%
* (starting NEXT week) TA office hours
* Readings: please do t .
* Today:

— Review: logistic regression, GD, SGD
— Hashing and Sketching

©Kakage 2017




Machine Learning forﬁg\Da\ta

(CSE 547 / STAT 548)

(...what is “big data” anyways?)

Ad Placement Strate

* Companies bid on ad prices
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Learning Problem for Click Prediction
«  Prediction task: \/ € {O) li ff \(/ ) )
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— Batch:
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— Online:
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* Many approaches (e.gg logistic reVMs naive Bayes, decision trees,
boosting,...) > $hoe /ﬁ L»se,JQ '

— Focus on logistic regression; captures main concepts, ideas generalize to other approaches

©Kakade 2017 5

Logistic Regression

Learn P(Y|X) directly

1 Assume a particular functional form Logistic

1
[ Sigmoid applied to a linear function function —_
1+ exp(—=2)
of the data: (or Sigmoid): -
1 0.9 -
P(Y =0|X,W) = .
1+ exp(wo + X wiX;) o,
\__/\_/\_/ 06 )

logit(x)
o
&

Z, :
04

Features can be discrete or continuous!
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Maximizing Conditional Log Likelihood

r/l
(T Ca = <

(w) = In[[PGIx,w) A W

J
d d
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j =1

i=1

(( 7/““% 71 )
: , L
Good news: /(w) is concave functionof w, .. ¢,
no local optima problems -

Bad news: no closed-form solution to maximize I(w)/
Good news: concave functions easy to optimize
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Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ¢

w(()t—l—l) _ wét) + UZ[yj —P(YI=1| Xj,“(/’tﬂ
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repeat
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Regularized Conditional Log Likelihood

If data are linearly separable, weights go to infinity ﬂ”"{
* Leads to overfitting = Penalize large weights Z ‘Uj

o~ [

* Add regularization penalty, e.g., L,: J

~ ] Pl w))

1
* Practical note about wy: Ao+ g
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Standard v. Regularized Updates

¢ Maximum conditional likelihood estimate

N
- J | xJ
w* =argmaxin |j1:[1P(y | x ,w)]

w0 ® Sy — P(Y =1 | xIgw)]
J

Regularized maximum conditional likelihood estimate

HP (v |x7, w ] —)\Zw

2 i>0

(H'l) — w(t)-l-n @ Zm][yj P(Y/=1|x),w ]}
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w* = arg max In




Stopping criterion PRZSN

lnHP Tx?, w )\||W||2
- 2
* Regularized logistic regression is strongly concave
— Negative second derivative bounded away from zero: ‘
,}(Y/ 57Z/m47/\/ - / Fro—
>
/ Con Cane "g(s() s 770
””»(/-5// Q)(fé/S)
* Strong concavity (convexity) is super helpful!! f
* For example, for strongly concave /(w):
- 1 & Nesdol !
tw™) = Uw) < S [IVEw)]12 2
Concgue
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Convergence rates for gradient
descent/ascent

* Number of iterations to get to accuracy
l(w*) —b(w) < ¢
e If func I(w) Lipschitz: O(1/¢€?
(w) Lip ()/AZ,/W—V//

| f( - f )

* |If gradient of func Lipschitz: O(1/¢)
/ —
s aneadl \V/W?AVQ(LJO) AV /
* If func is strongly convex: O(In(1/€))
A 5 Moo '4"% —
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Challenge 1: Complexity of computing
gradients o(A)

* What’s the cost of a gradient update step for LR??J;

J= ¢

Jym/w@‘tf 4 oabf/(fﬂ.,La @(/Vo‘) (&M/—
W//QYNL7 'S O(///Z)
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©Kakade 2017 13

Challenge 2: Data is streaming

* Assumption thus far: Batch data

* But, click prediction is a'streaming data task:
— User enters query, and ad must be :

* Observe x), and must predict y/ .
g ‘ e J( Ne 7/ — © SQ—’V
_i -BD > >(J — F A E ot
-\ = t/\_) \/\)
— User either clicks or doesn’t click on ad:

 Label yi is revealed afterwards
— Google gets a reward if user clicks on ad

— Weights must be updated for next time:

©Kakade 2017 14




Learning Problems as Expectations

* Minimizing loss in training data:
— Given dataset:
* Sampled iid from some distribution p(x) on features:

— Loss function, e.g., hinge loss, logistic loss,...
— We often minimize loss in training data:

N
Zg(w’xj) A
=t /o 'S5 \'[C/C 7C/(Q)7.{

ED (W) =
-

* However, we should really minimize expected loss on all data:

l(w) = Ex [{(w,x)] = /p(x)ﬁ(w,x)dx

* So, we are approximating the integral by the average on the training data
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Gradient Ascent in Terms of Expectations

* “True” objective function:

l(w) = Ex [{(w,x)] = /p(x)f(w,x)dx

* Taking the gradient:

o Ay = Iz ZV/(W/K>]

e “True” gradient ascent rule: ‘Z

W w At (o)

* How do we estimate expected gradient?
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SGD: Stochastic Gradient Ascent (or Descent)
* “True” gradient: VK(W) — Fy [VK(W’ X)]

* Sample based approximation: ¢ A’D /,57/

SN '

\7/( (('k/ = % //{ (W >(>

o \7/((%): ’/‘T/ é V/((Cu 5(1)

* What if we estimate gradient WI'EHJUS'C one sample???

Unbiased estimate of gradient
Very noisy!

Called stochastic gradient ascent (or descent)
* Among many other names

VERY useful in practice!!!
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* Given a stochastic function of parameters:
— Want to find maximum

L
foo be e
* Start from w(© A § %o Gy ~
* Repeat until convergence: L// \a}

— Get a sample data point xt

— Update parameters:

+ ! <+
w Ut T S )

*  Works in the online learning setting!

* Complexity of each gradient step is constant in number of examples!
* In general, step size changes with iterations
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Stochastic Gradient Ascent for Logistic
Regression

* Logistic loss as a stochastic function:
Ex [t(w,x)] = Ex [In P(y|x, w) — X||w|[3]
2

* Batch gradient ascent updates:

N
1 . ) )
(t+1) ! (t) 4 n {_szgt) + N} :xz(q)[y(g) —P(Y = 1X(j),w(t))}}

j=1
* Stochastic gradient ascent updaz L Fo .
— Online setting: e 2 /ovl, ~
oD @ Aol 4 2Oy _ ( _ 1|x<t (t))]}
©Kakade 2017 19

Convergence Rate of SGD

* Theorem:
— (see CSE546 notes and readings)
— Let f be a strongly convex stochastic function

— Assume g@m‘.ﬁ/ﬁs Lipschitz continuous / /
|0y - L) v~

— Then, for step sizes: ( | )
e =0 ¢
— The expected loss decreases as O(1/t*0.5): ) L

hf/(wﬂ\//uﬂj = %’
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Convergence Rates for
Gradient Descent/Ascent vs. SGD

Number of Iterations to get to accuracy
l(w*) —l(w) < e

Gradient descent:
— If func is strongly convex: O(In(1/€)) iterations

Stochastic gradient descent:
— If func is strongly convex: O(1/€) iterations

Seems exponentially worse, but much more subtle:
— Total running time, e.g., for logistic regression:

* Gradient descent:
* SGD:
* SGD can win when we have a lot of data

— See readings for more details
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What you should know about
Logistic Regression (LR) and Click Prediction

Click prediction problem:
— Estimate probability of clicking
— Can be modeled as logistic regression

* Logistic regression model: Linear model
* Gradient ascent to optimize conditional likelihood
* Overfitting + regularization
* Regularized optimization
— Convergence rates and stopping criterion

* Stochastic gradient ascent for large/streaming data
— Convergence rates of SGD

©Kakade 2017 22

11



