Case Study 1: Estimating Click Probabilities

Intro Logistic Regression Gradient Descent + SGD

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 4, 2017

©Kakade 2017

1

Announcements: The se

Two WKS

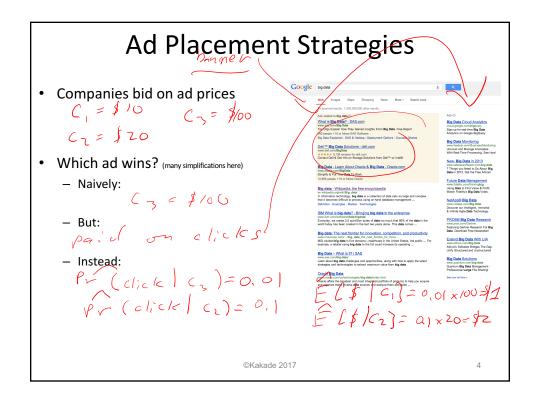
- Project Proposals: due this Friday!
 - One page
- HW1 posted today.
- (starting NEXT week) TA office hours
- Readings: please do them.
- Today:
 - Review: logistic regression, GD, SGD
 - Hashing and Sketching

©Kaka@e 2017

in the field"

Machine Learning for Big Data (CSE 547 / STAT 548)

(...what is "big data" anyways?)



Learning Problem for Click Prediction

- Prediction task: $\forall \in \{0,1\}$ $\forall r \in \{0,1\}$ $\forall r \in \{0,1\}$
- X = (festives of ad, features of person,

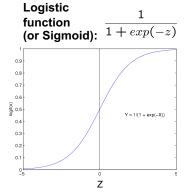
 Data: keymond, person index, the
 { (xi, yi) }
- Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision trees, to show and, observe Y
 - Focus on logistic regression; captures main concepts, ideas generalize to other approaches

©Kakade 2017

Logistic Regression

- Learn P(Y|X) directly
 - ☐ Assume a particular functional form
 - ☐ Sigmoid applied to a linear function of the data:

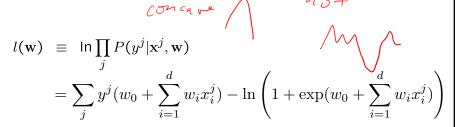
$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_{i} w_i X_i)}$$



Features can be discrete or continuous!

©Kakade 2017

Maximizing Conditional Log Likelihood



Good news: *I*(**w**) is concave function of **w**, no local optima problems

itrustin methods

Bad news: no closed-form solution to maximize $I(\mathbf{w})$

Good news: concave functions easy to optimize

©Kakade 2017

7

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ϵ

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

repeat

©Kakade 2017

Regularized Conditional Log Likelihood

- If data are linearly separable, weights go to infinity
- 2 W 2
- Leads to overfitting → Penalize large weights
- Add regularization penalty, e.g., L₂:

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})) - \underbrace{\frac{\lambda}{2} ||\mathbf{w}||_{2}^{2}}$$

• Practical note about w₀:



©Kakade 2017

a

Standard v. Regularized Updates

· Maximum conditional likelihood estimate

$$\begin{aligned} \mathbf{w}^* &= \arg\max_{\mathbf{w}} \ln \left[\prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right] \\ w_i^{(t+1)} &\leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j_{\text{(t)}} \mathbf{w})] \end{aligned}$$

· Regularized maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[\prod_{j} P(y^j | \mathbf{x}^j, \mathbf{w})) \right] - \frac{\lambda}{2} \sum_{i>0} w_i^2$$

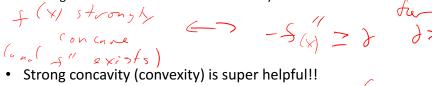
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

©Kakade 2017

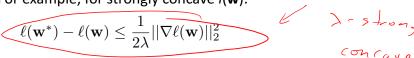
Stopping criterion / >>

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})) - \frac{\lambda}{2} ||\mathbf{w}||_{2}^{2}$$

- Regularized logistic regression is strongly concave
 - Negative second derivative bounded away from zero:



- For example, for strongly concave *l*(**w**):



©Kakade 2017

Convergence rates for gradient descent/ascent

Number of iterations to get to accuracy

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \epsilon$$

- If func I(w) Lipschitz: $O(1/\epsilon^2)$ $| l(\omega) l(\omega^-) | \leq | l(\omega^-) |$
- If gradient of func Lipschitz: O(1/€)

• If func is strongly convex: $O(\ln(1/\epsilon))$

A smooth

©Kakade 2017

Challenge 1: Complexity of computing gradients

What's the cost of a gradient update step for LR??

$$w_{i}^{(t+1)} \leftarrow w_{i}^{(t)} + \eta \left\{ -\lambda w_{i}^{(t)} + \sum_{j=1}^{N} x_{i}^{j} [y^{j} - P(Y^{j} = 1 \mid \mathbf{x}^{j}, \mathbf{w}^{j})] \right\}$$

$$\text{valuete one courtingle } \mathcal{O}(Nd) \text{ comp}$$

$$\text{Vaively, complexity is } \mathcal{O}(Nd^{2})$$

with "caching" O(Nd)

©Kakade 2017 13

Challenge 2: Data is streaming

- Assumption thus far: Batch data
- But, click prediction is a streaming data task:
 - User enters query, and ad must be selected:
 - Observe x^j, and must predict y^j

- User either clicks or doesn't click on ad:
 - Label y^j is revealed afterwards
 - Google gets a reward if user clicks on ad
- Weights must be updated for next time:

©Kakade 2017

Learning Problems as Expectations

- Minimizing loss in training data:
 - Given dataset:
 - Sampled iid from some distribution p(x) on features:
 - Loss function, e.g., hinge loss, logistic loss,...
 - We often minimize loss in training data:

However, we should really minimize expected loss on all data:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

So, we are approximating the integral by the average on the training data

©Kakade 2017

Gradient Ascent in Terms of Expectations

• "True" objective function:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

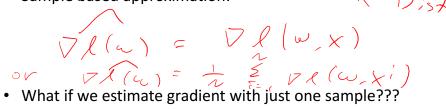
• Taking the gradient:

How do we estimate expected gradient?

©Kakade 2017

SGD: Stochastic Gradient Ascent (or Descent)

- "True" gradient: $abla \ell(\mathbf{w}) = E_{\mathbf{x}} \left[
 abla \ell(\mathbf{w}, \mathbf{x}) \right]$
- Sample based approximation:



- - Unbiased estimate of gradient
 - Very noisy!
 - Called stochastic gradient ascent (or descent)
 - · Among many other names
 - VERY useful in practice!!!

©Kakade 2017

17

Stochastic Gradient Ascent: General Case

- Given a stochastic function of parameters:
 - Want to find maximum
- Start from **w**⁽⁰⁾
- Repeat until convergence:
 - Get a sample data point x^t
 - Update parameters:

- Works in the online learning setting!
- Complexity of each gradient step is constant in number of examples!
- In general, step size changes with iterations

©Kakade 2017

Stochastic Gradient Ascent for Logistic Regression

Logistic loss as a stochastic function:

$$E_{\mathbf{x}}\left[\ell(\mathbf{w}, \mathbf{x})\right] = E_{\mathbf{x}}\left[\ln P(y|\mathbf{x}, \mathbf{w}) - \frac{\lambda}{2}||\mathbf{w}||_{2}^{2}\right]$$

· Batch gradient ascent updates:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \frac{1}{N} \sum_{j=1}^N x_i^{(j)} [y^{(j)} - P(Y = 1 | \mathbf{x}^{(j)}, \mathbf{w}^{(t)})] \right\}$$

Stochastic gradient ascent updațes:

Online setting:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ \lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\}$$

©Kakade 2017

Convergence Rate of SGD

- Theorem:
 - (see CSE546 notes and readings)
 - Let f be a strongly convex stochastic function
 - Assume gradient of f is Lipschitz continuous

es:
$$2 \leftarrow 20$$

©Kakade 2017

Convergence Rates for Gradient Descent/Ascent vs. SGD

· Number of Iterations to get to accuracy

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \epsilon$$

- · Gradient descent:
 - If func is strongly convex: $O(\ln(1/\epsilon))$ iterations
- Stochastic gradient descent:
 - If func is strongly convex: $O(1/\epsilon)$ iterations
- Seems exponentially worse, but much more subtle:
 - Total running time, e.g., for logistic regression:
 - · Gradient descent:
 - SGD:
 - SGD can win when we have a lot of data
 - See readings for more details

©Kakade 2017

21

What you should know about

Logistic Regression (LR) and Click Prediction

- Click prediction problem:
 - Estimate probability of clicking
 - Can be modeled as logistic regression
- Logistic regression model: Linear model
- Gradient ascent to optimize conditional likelihood
- Overfitting + regularization
- Regularized optimization
 - Convergence rates and stopping criterion
- Stochastic gradient ascent for large/streaming data
 - Convergence rates of SGD

©Kakade 2017