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Intro
Logistic Regression
Gradient Descent + SGD

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Sham Kakade
March 28, 2017

©Kakade 2017 1

Announcements:

e Lecture 2 cancelled

—TAs will hold a python recitation

HW1 posted today.

(starting NEXT week) TA office hours

Readings: please do them.

Project Proposals: please start thinking about it!

Today:
— Review: click prediction and logistic regression
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Ad Placement Strate

* Companies bid on ad prices
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Key Task: Estimating Click Probabilities
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* What is the probability that user j will click on ad j

-
- —_

* Not important just for ads:
— Optimize search results
— Suggest news articles
— Recommend products

* Methods much more general, useful for:
— Classification

— Regression
— Density estimation
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Learning Problem for Click Prediction
«  Prediction task: \/ € {O) li ff \(/ ) )
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— Online:
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* Many approaches (e.gg logistic reVMs naive Bayes, decision trees,
boosting,...) > $hoe /ﬁ L»se,JQ '

— Focus on logistic regression; captures main concepts, ideas generalize to other approaches
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Logistic Regression

Learn P(Y|X) directly

1 Assume a particular functional form Logistic

1
[ Sigmoid applied to a linear function function —_
1+ exp(—=2)
of the data: (or Sigmoid): -
1 0.9 -
P(Y =0|X,W) = .
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Features can be discrete or continuous!
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Very convenient! ¢« "
(/\)0

P(Y =0|X =< X1,..Xn >) =

1+ exp(wo + X wi X;)

\Q

implies
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©Kakade 2017 7

Digression: Logistic regression more
generally

* Logistic regression in more general case, where

Yin{yy...yr} o AL gy
for k<R
PY = g X) = exp(wpo 4 >y ki Xi)

14+ Yl exp(wio + X1y w)iX;)

for k=R (normalization, so no weights for this class)
1

1+ Zfz_ll exp(wjo + X701 wj; X;)

P(Y =yg|X) =

Features can be discrete or continuous!
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Loss function: Conditional Likelihood

* Have a bunch of iid data of the form:

[yl/?;)[;{f/y = D - (UX/ 0?/)

* Discriminative (logistic regression) loss function:

Conditional Data Likelihood (¢ 4 s
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Expressing Conditional Log Likelihood

1
1 4 exp(wo + 3 wi X;)

l(W) Z|nP(yJ|XJ W) exp(wo + 3; wi X;)
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Maximizing Conditional Log Likelihood

(T * 1o
I(w) = |nHP(yj|xj,w)
J. d , d '
:Zyﬂ(wo+2wix§)—ln 1+exp(w0+zwimg)
J i=1 i1
(( /t’/ﬁ 7ZL\{

Good news: /(w) is concave functionof w, .. ¢,
no local optima problems -

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize
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Optimizing concave function —
Gradient ascent

* Conditional likelihood for logistic regression is concave
* Find optimum with gradient ascent

ol(w) ol(w)

. I

Gradient: Vwl(w) = [
b S==ll

0 il o crens s A—

Updaterule: A o NV wl(w)
ol(w
wi(t—i—l) - wi(t) + ng
ow;

* Gradient ascent is simplest of optimization approaches ey
— e.g;, Conjugate gradient asce ch better (see reading) Fes
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Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ¢

w(()t-i—l) — wét) + nZ[yj —P(Y'=1 | xj,v&%]

Fori=1,..,d,

wZ(t—}—l) - wft) +nY 2y — P(YT =1 |x7, W]
—7 . — J S
N z VS )

repeat
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Regularized Conditional Log Likelihood

* |f data are linearly separable, weights go to infinity 9“{

* Leads to overfitting = Penalize large weights Z ‘Uj
o=

* Add regularization penalty, e.g., L,: /

mHP %7, w))

)
* Practical note about wy: A o~ req /.
- oFhs gy
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Standard v. Regularized Updates

¢ Maximum conditional likelihood estimate

N
* J | xJ
w* = argmaxin IJI:[ Py | x ,w)]

w0 4 S [y — P(YT =1 | xIgw)]
i

* Regularized maximum conditional likelihood estimate

HPyj|xj ] —/\Zw

2i>0

WD (t)+n{f>zxﬂ[y p(yﬂ—1|xﬂ'v3]}
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w" = arg max In

Stopping criterion RSN

=In[[ P/ Ix7, w)) — Allwl|3
j 2

* Regularized logistic regression i concave
— Negative second derivative bounded away from zero:

/S/(Y/ 57L/a—147/\/ — / (72(&/*
/ Com Cqpn ,’g(y> 2 } &76
vl 5 Q>d7/s>

» Strong concavity (convexity) is super helpful!!
* For example, for strongly concave /(w):

- 1
Uw?) = tw) < S [IVEW)l2
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Convergence rates for gradient
descent/ascent

* Number of iterations to get to accuracy
l(w*) —b(w) < ¢

* If func I(w) Lipschitz: O(1/€?)

* If gradient of func Lipschitz: O(1/€)

* If funcis strongly convex: O(In(1/€))

©Kakade 2017 17

Challenge 1: Complexity of computing
gradients

* What’s the cost of a gradient update step for LR???

J
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Challenge 2: Data is streaming

* Assumption thus far: Batch data

* But, click prediction is a streaming data task:

— User enters query, and ad must be selected:
e Observe ), and must predict y/

— User either clicks or doesn’t click on ad:
* Label yi is revealed afterwards
— Google gets a reward if user clicks on ad

— Weights must be updated for next time:
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Learning Problems as Expectations

Minimizing loss in training data:
— Given dataset:

e Sampled iid from some distribution p(x) on features:
— Loss function, e.g., hinge loss, logistic loss,...
— We often minimize loss in training data:

:%Z WXJ

However, we should really minimize expected loss on all data:

l(w) = Ex [{(w,x)] = /p(x)ﬁ(w,x)dx

So, we are approximating the integral by the average on the training data
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Gradient Ascent in Terms of Expectations

* “True” objective function:

((w) = By [(w,x)] = / p(x)6(w, X)dx
* Taking the gradient:

* “True” gradient ascent rule:

* How do we estimate expected gradient?
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SGD: Stochastic Gradient Ascent (or Descent)
* “True” gradient: VK(W) = by [VK(W, X)]

* Sample based approximation:

* What if we estimate gradient with just one sample???

Unbiased estimate of gradient

Very noisy!

Called stochastic gradient ascent (or descent)
* Among many other names
VERY useful in practice!!!
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Stochastic Gradient Ascent: General Case

* Given a stochastic function of parameters:
— Want to find maximum

* Start from w(®
* Repeat until convergence:

— Get a sample data point xt
— Update parameters:
* Works in the online learning setting!

* Complexity of each gradient step is constant in number of examples!
* In general, step size changes with iterations
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Stochastic Gradient Ascent for Logistic
Regression

* Logistic loss as a stochastic function:
By [6(w,x)] = Ex [In P(ylx, w) — A||w][3]
2

e Batch gradient ascent updates:

N
1 N .
wl(tﬂ) — wgt) +7 {—/\wgt) + N ngj)[y(]) —-P(Y = IX(J),W(”)]}
i=1

* Stochastic gradient ascent updates:
— Online setting:

wEtH) — wz@ + {—)\wgt) + :cgt) [y — P(Y = 1\X(t)aw(t))]}
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Convergence Rate of SGD

* Theorem:
— (see Nemirovski et al ‘09 from readings)

Let f be a strongly convex stochastic function

Assume gradient of fis Lipschitz continuous and bounded

Then, for step sizes:

The expected loss decreases as O(1/t):
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Convergence Rates for
Gradient Descent/Ascent vs. SGD

*  Number of Iterations to get to accuracy
(W) —l(w) < e

* Gradient descent:
— If func is strongly convex: O(In(1/€)) iterations

* Stochastic gradient descent:
— If func is strongly convex: O(1/€) iterations

* Seems exponentially worse, but much more subtle:
— Total running time, e.g., for logistic regression:

* Gradient descent:
* SGD:

* SGD can win when we have a lot of data

— See readings for more details
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What you should know about
Logistic Regression (LR) and Click Prediction

Click prediction problem:
— Estimate probability of clicking
— Can be modeled as logistic regression

* Logistic regression model: Linear model
* Gradient ascent to optimize conditional likelihood
* Overfitting + regularization
* Regularized optimization
— Convergence rates and stopping criterion

* Stochastic gradient ascent for large/streaming data
— Convergence rates of SGD
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