Case Study 1: Estimating Click Probabilities
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Announcements:

* Lecture 2 cancelled

—TAs will hold a python recitation
HW1 posted today.
Readings: please do them.

Project Proposals: please start thinking about it!

Today:

— Review: click prediction and logistic regression
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Ad Placement Strategies

N . . Google  vigaaa [ o |
* Companies bid on ad prices S ;

d WhICh ad WInS? (many simplifications here)

— Naively:

— But:

— Instead:
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Key Task: Estimating Click Probabilities
* What is the probability that user j will click on ad j

* Not important just for ads:
— Optimize search results
— Suggest news articles
— Recommend products

* Methods much more general, useful for:
— Classification

— Regression
— Density estimation
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Learning Problem for Click Prediction

e Prediction task:

¢ Features:
* Data:
— Batch:
—  Online:

* Many approaches (e.g., logistic regression, SVMs, naive Bayes, decision trees,
boosting,...)
— Focus on logistic regression; captures main concepts, ideas generalize to other approaches
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Logistic Regression

Learn P(Y|X) directly

1 Assume a particular functional form Logistic .
[ Sigmoid applied to a linear function function —_
of the data: (or Sigmoid): 1+ ezp(=2)

1 09 -
P(Y = 0|X,W) = .
1+ exp(wo + X wiX;)

Z o5

04
03
0.2
o1

¥ =141 + exp(-X))

-5 0

Features can be discrete or continuous!
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Very convenient!

1
1+ exp(wo + X wi X;)

P(Y=0|X =< Xq,..Xn>) =

implies
L PO =T1X) _

P(Y =0|X)

wo + Y w; X,
3
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Digression: Logistic regression more
generally

* Logistic regression in more general case, where
Yin{ys...ys}

for k<R

exp(wrg + 201 wi; X;)
P(Y = y/X) = o=l

14+ Yl exp(wio + X1y w)iX;)

for k=R (normalization, so no weights for this class)
1

1+ Zfz_ll exp(wjo + X701 wj; X;)

P(Y =yg|X) =

Features can be discrete or continuous!
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Loss function: Conditional Likelihood

* Have a bunch of iid data of the form:

* Discriminative (logistic regression) loss function:
Conditional Data Likelihood

N . .
|nP(DY | DX»W) = Z InP(yJ |X]7W)
Jj=1
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Expressing Conditional Log Likelihood

P(Y =0|X,w) = E

1+ exp(wo + i wiXy)

l(w)EZInP(yj|Xj,w) o
3 exp(wg + > w; X;)

J PO =X w) = 1+ exp(wo + s wiX;)

lw) = Zyj mPY =1|x/,w)+ (1 — /) In P(Y = 0|x’, w)
J
d . d ’
— Zyj(wo + szxz) —1In <1 + exp(wp + Z wle)>
j i=1

=1
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Maximizing Conditional Log Likelihood

(w) = In[[PG/X,w)
J. d , d '
:Zyﬂ(wo+2wix§)—ln 1+exp(w0+zwimg)
J i=1 i1

Good news: I(w) is concave function of w,
no local optima problems

Bad news: no closed-form solution to maximize /(w)
Good news: concave functions easy to optimize
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Optimizing concave function —
Gradient ascent

* Conditional likelihood for logistic regression is concave
* Find optimum with gradient ascent

ol(w) ol(w)

. I

Gradient: Vwl(w) = [

a’wo ’ awn

il

Update rule: Aw — nvwl(W)

wi(t—i_l) “— wl(t) —+ UM
ow;

* Gradient ascent is simplest of optimization approaches

— e.g., Conjugate gradient ascent much better (see reading)
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Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ¢

w(()t-i—l) — w(()t) + nZ[yj —P(Y'=1 | xj,v&%]

Fori=1,..,d,
wiD O S 2y — Py =1 | %7, W)

J

repeat
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Regularized Conditional Log Likelihood

* |f data are linearly separable, weights go to infinity
* Leads to overfitting = Penalize large weights

* Add regularization penalty, e.g., L,:

IHHP T[x7, w)) = Allwll3
2

* Practical note about wy:
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Standard v. Regularized Updates

¢ Maximum conditional likelihood estimate

N
* J | xJ
w* = argmaxin |Jl:[1 Py | x ,w)]

wi(H_l) — wi(t) + nzxg[yj —P(Yi=1| xj(i)w)]
J

* Regularized maximum conditional likelihood estimate

HP<yﬂ'xj,w>>] -2 W}
j 2

J i>0

w* = arg max In
w

wlHD — w® {—sz-(t) + Yol - PO =1, w 1}
J
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Stopping criterion

((w) =In [[PG/[x7, w)) — Allwl[3
j 2

* Regularized logistic regression is strongly concave
— Negative second derivative bounded away from zero:

» Strong concavity (convexity) is super helpful!!
* For example, for strongly concave /(w):

* 1 2
Uw?) = tw) < S [[VEWw)l2
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Convergence rates for gradient
descent/ascent

* Number of iterations to get to accuracy
l(w*) —b(w) < ¢

* If func I(w) Lipschitz: O(1/€?)

* If gradient of func Lipschitz: O(1/€)

* If funcis strongly convex: O(In(1/€))
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Challenge 1: Complexity of computing
gradients

* What’s the cost of a gradient update step for LR???

J
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Challenge 2: Data is streaming

* Assumption thus far: Batch data

* But, click prediction is a streaming data task:

— User enters query, and ad must be selected:
e Observe ), and must predict y/

— User either clicks or doesn’t click on ad:
* Label yi is revealed afterwards
— Google gets a reward if user clicks on ad

— Weights must be updated for next time:

©Kakade 2017 19

Learning Problems as Expectations

Minimizing loss in training data:
— Given dataset:

e Sampled iid from some distribution p(x) on features:
— Loss function, e.g., hinge loss, logistic loss,...
— We often minimize loss in training data:

:%Z WXJ

However, we should really minimize expected loss on all data:

l(w) = Ex [{(w,x)] = /p(x)ﬁ(w,x)dx

So, we are approximating the integral by the average on the training data
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Gradient Ascent in Terms of Expectations

* “True” objective function:

((w) = By [(w,x)] = / p(x)6(w, X)dx
* Taking the gradient:

* “True” gradient ascent rule:

* How do we estimate expected gradient?
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SGD: Stochastic Gradient Ascent (or Descent)
* “True” gradient: VK(W) = by [VK(W, X)]

* Sample based approximation:

* What if we estimate gradient with just one sample???

Unbiased estimate of gradient

Very noisy!

Called stochastic gradient ascent (or descent)
* Among many other names
VERY useful in practice!!!
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Stochastic Gradient Ascent: General Case

* Given a stochastic function of parameters:
— Want to find maximum

* Start from w(®
* Repeat until convergence:

— Get a sample data point xt
— Update parameters:
* Works in the online learning setting!

* Complexity of each gradient step is constant in number of examples!
* In general, step size changes with iterations
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Stochastic Gradient Ascent for Logistic
Regression

* Logistic loss as a stochastic function:
By [6(w,x)] = Ex [In P(ylx, w) — A||w][3]
2

e Batch gradient ascent updates:

N
1 N .
wl(tﬂ) — wgt) +7 {—/\wgt) + N ngj)[y(]) —-P(Y = IX(J),W(”)]}
i=1

* Stochastic gradient ascent updates:
— Online setting:

wEtH) — wz@ + {—)\wgt) + :cgt) [y — P(Y = 1\X(t)aw(t))]}
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Convergence Rate of SGD

* Theorem:
— (see Nemirovski et al ‘09 from readings)

Let f be a strongly convex stochastic function

Assume gradient of fis Lipschitz continuous and bounded

Then, for step sizes:

The expected loss decreases as O(1/t):
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Convergence Rates for
Gradient Descent/Ascent vs. SGD

*  Number of Iterations to get to accuracy
(W) —l(w) < e

* Gradient descent:
— If func is strongly convex: O(In(1/€)) iterations

* Stochastic gradient descent:
— If func is strongly convex: O(1/€) iterations

* Seems exponentially worse, but much more subtle:
— Total running time, e.g., for logistic regression:

* Gradient descent:
* SGD:

* SGD can win when we have a lot of data

— See readings for more details
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What you should know about
Logistic Regression (LR) and Click Prediction

Click prediction problem:
— Estimate probability of clicking
— Can be modeled as logistic regression

* Logistic regression model: Linear model
* Gradient ascent to optimize conditional likelihood
* Overfitting + regularization
* Regularized optimization
— Convergence rates and stopping criterion

* Stochastic gradient ascent for large/streaming data
— Convergence rates of SGD
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