Case Study 1: Estimating Click Probabilities

Intro Logistic Regression Gradient Descent + SGD

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade March 28, 2017

©Kakade 2017

1

Announcements:

- Lecture 2 cancelled
 - -TAs will hold a python recitation
- HW1 posted today.
- Readings: please do them.
- Project Proposals: please start thinking about it!
- Today:
 - Review: click prediction and logistic regression

©Kaka@e 2017

Add Placement Strategies • Companies bid on ad prices • Which ad wins? (many simplifications here) — Naively: — But: — But: — Instead: | Manual Strategies | Ma

Key Task: Estimating Click Probabilities

©Kakade 2017

- What is the probability that user *i* will click on ad *j*
- Not important just for ads:
 - Optimize search results
 - Suggest news articles
 - Recommend products
- Methods much more general, useful for:
 - Classification
 - Regression
 - Density estimation

©Kakade 2017

Learning Problem for Click Prediction

- Prediction task:
- Features:
- Data:
 - Batch:
 - Online:
- Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision trees, boosting,...)
 - Focus on logistic regression; captures main concepts, ideas generalize to other approaches

©Kakade 2017

5

Logistic Regression

- Learn P(Y|X) directly
 - ☐ Assume a particular functional form
 - ☐ Sigmoid applied to a linear function of the data:

$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

Features can be discrete or continuous!

©Kakade 2017

Very convenient!

$$P(Y = 0 | X = < X_1, ... X_n >) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\ln \frac{P(Y=1 | X)}{P(Y=0 | X)} = w_0 + \sum_i w_i X_i$$

classification rule!

©Kakade 2017

7

Digression: Logistic regression more generally

• Logistic regression in more general case, where Y in $\{y_1,...,y_R\}$

for k<R

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{n} w_{ki} X_i)}{1 + \sum_{i=1}^{R-1} \exp(w_{i0} + \sum_{i=1}^{n} w_{ii} X_i)}$$

for k=R (normalization, so no weights for this class)

$$P(Y = y_R|X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)}$$

Features can be discrete or continuous!

©Kakade 2017

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form:
- Discriminative (logistic regression) loss function:

Conditional Data Likelihood

$$\ln P(\mathcal{D}_Y \mid \mathcal{D}_{\mathbf{X}}, \mathbf{w}) = \sum_{j=1}^{N} \ln P(y^j \mid \mathbf{x}^j, \mathbf{w})$$

9

Expressing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \sum_{j} \ln P(y^{j}|\mathbf{x}^{j},\mathbf{w})$$

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$\ell(\mathbf{w}) = \sum_{j} y^{j} \ln P(Y = 1 | \mathbf{x}^{j}, \mathbf{w}) + (1 - y^{j}) \ln P(Y = 0 | \mathbf{x}^{j}, \mathbf{w})$$
$$= \sum_{j} y^{j} (w_{0} + \sum_{i=1}^{d} w_{i} x_{i}^{j}) - \ln \left(1 + \exp(w_{0} + \sum_{i=1}^{d} w_{i} x_{i}^{j}) \right)$$

©Kakade 2017

Maximizing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$
$$= \sum_{j} y^{j} (w_{0} + \sum_{i=1}^{d} w_{i} x_{i}^{j}) - \ln \left(1 + \exp(w_{0} + \sum_{i=1}^{d} w_{i} x_{i}^{j}) \right)$$

Good news: *I*(**w**) is concave function of **w**, no local optima problems

Bad news: no closed-form solution to maximize *I*(w)

Good news: concave functions easy to optimize

©Kakade 2017

11

Optimizing concave function – Gradient ascent

- Conditional likelihood for logistic regression is concave
- Find optimum with gradient ascent

Gradient: $\nabla_{\mathbf{w}} l(\mathbf{w}) = [\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}]'$

Jpdate rule: $\Delta ext{w} = \eta
abla_{ ext{w}} l(ext{w})$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$

- · Gradient ascent is simplest of optimization approaches
 - e.g., Conjugate gradient ascent much better (see reading)

©Kakade 2017

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ϵ

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

For
$$i$$
 = 1,..., d ,
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

repeat

©Kakade 201

13

Regularized Conditional Log Likelihood

- If data are linearly separable, weights go to infinity
- Leads to overfitting → Penalize large weights
- Add regularization penalty, e.g., L₂:

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})) - \frac{\lambda}{2} ||\mathbf{w}||_{2}^{2}$$

Practical note about w₀:

©Kakade 2017

Standard v. Regularized Updates

· Maximum conditional likelihood estimate

$$\begin{aligned} \mathbf{w}^* &= \arg\max_{\mathbf{w}} \ln \left[\prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right] \\ w_i^{(t+1)} &\leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j_{\text{(f)}} \mathbf{w})] \end{aligned}$$

· Regularized maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[\prod_{j} P(y^j | \mathbf{x}^j, \mathbf{w}) \right] - \frac{\lambda}{2} \sum_{i>0} w_i^2$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

©Kakade 2017

15

Stopping criterion

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})) - \frac{\lambda}{2} ||\mathbf{w}||_{2}^{2}$$

- Regularized logistic regression is strongly concave
 - Negative second derivative bounded away from zero:
- Strong concavity (convexity) is super helpful!!
- For example, for strongly concave *l*(**w**):

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \frac{1}{2\lambda} ||\nabla \ell(\mathbf{w})||_2^2$$

©Kakade 2017

Convergence rates for gradient descent/ascent

• Number of iterations to get to accuracy

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \epsilon$$

- If func I(w) Lipschitz: $O(1/\epsilon^2)$
- If gradient of func Lipschitz: $O(1/\epsilon)$
- If func is strongly convex: $O(\ln(1/\epsilon))$

©Kakade 2017

17

Challenge 1: Complexity of computing gradients

• What's the cost of a gradient update step for LR???

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

©Kakade 2017

Challenge 2: Data is streaming

- Assumption thus far: Batch data
- But, click prediction is a streaming data task:
 - User enters query, and ad must be selected:
 - Observe x^j, and must predict y^j
 - User either clicks or doesn't click on ad:
 - Label y^j is revealed afterwards
 - Google gets a reward if user clicks on ad
 - Weights must be updated for next time:

©Kakade 2017

19

Learning Problems as Expectations

- Minimizing loss in training data:
 - Given dataset:
 - Sampled iid from some distribution $p(\mathbf{x})$ on features:
 - Loss function, e.g., hinge loss, logistic loss,...
 - We often minimize loss in training data:

$$\ell_{\mathcal{D}}(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ell(\mathbf{w}, \mathbf{x}^{j})$$

• However, we should really minimize expected loss on all data:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

• So, we are approximating the integral by the average on the training data

©Kakade 2017

Gradient Ascent in Terms of Expectations

• "True" objective function:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

- Taking the gradient:
- "True" gradient ascent rule:
- How do we estimate expected gradient?

©Kakade 2017

21

SGD: Stochastic Gradient Ascent (or Descent)

- "True" gradient: $abla \ell(\mathbf{w}) = E_{\mathbf{x}} \left[
 abla \ell(\mathbf{w}, \mathbf{x}) \right]$
- Sample based approximation:
- What if we estimate gradient with just one sample???
 - Unbiased estimate of gradient
 - Very noisy!
 - Called stochastic gradient ascent (or descent)
 - · Among many other names
 - VERY useful in practice!!!

©Kakade 2017

Stochastic Gradient Ascent: General Case

- Given a stochastic function of parameters:
 - Want to find maximum
- Start from **w**⁽⁰⁾
- · Repeat until convergence:
 - Get a sample data point x^t
 - Update parameters:
- · Works in the online learning setting!
- · Complexity of each gradient step is constant in number of examples!
- In general, step size changes with iterations

©Kakade 2017

23

Stochastic Gradient Ascent for Logistic Regression

• Logistic loss as a stochastic function:

$$E_{\mathbf{x}}\left[\ell(\mathbf{w}, \mathbf{x})\right] = E_{\mathbf{x}}\left[\ln P(y|\mathbf{x}, \mathbf{w}) - \frac{\lambda}{2}||\mathbf{w}||_{2}^{2}\right]$$

• Batch gradient ascent updates:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \frac{1}{N} \sum_{j=1}^N x_i^{(j)} [y^{(j)} - P(Y = 1 | \mathbf{x}^{(j)}, \mathbf{w}^{(t)})] \right\}$$

- Stochastic gradient ascent updates:
 - Online setting:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\}$$

©Kakade 2017

Convergence Rate of SGD

- Theorem:
 - (see Nemirovski et al '09 from readings)
 - Let f be a strongly convex stochastic function
 - Assume gradient of f is Lipschitz continuous and bounded
 - Then, for step sizes:
 - The expected loss decreases as O(1/t):

©Kakade 2017

25

Convergence Rates for Gradient Descent/Ascent vs. SGD

· Number of Iterations to get to accuracy

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \epsilon$$

- · Gradient descent:
 - If func is strongly convex: $O(\ln(1/\epsilon))$ iterations
- Stochastic gradient descent:
 - If func is strongly convex: $O(1/\epsilon)$ iterations
- Seems exponentially worse, but much more subtle:
 - Total running time, e.g., for logistic regression:
 - · Gradient descent:
 - SGD:
 - SGD can win when we have a lot of data
 - See readings for more details

©Kakade 2017

What you should know about

Logistic Regression (LR) and Click Prediction

- Click prediction problem:
 - Estimate probability of clicking
 - Can be modeled as logistic regression
- Logistic regression model: Linear model
- Gradient ascent to optimize conditional likelihood
- Overfitting + regularization
- Regularized optimization
 - Convergence rates and stopping criterion
- Stochastic gradient ascent for large/streaming data
 - Convergence rates of SGD

©Kakade 2017