Case Study 2: Document Retrieval

Clustering Documents

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Sham Kakade
April 20, 2017

©Sham Kakade 2017 1

Announcements:

HW?2 posted, due Mon, May 1
Project Milestones, due Mon, May 8

Plug for a talk

— Talk: Accelerating Stochastic Gradient Descent
— Tue at 1:30 in CSE 303

— It’s a very promising directions.... 5 T =
Aesda
6 f =t
* Today:
y op. -

— Review: map-reduce

: T
— Today: clustering and Coio AAo

Vq_ﬁ.”/"_Q

OKakade 2017

4/25/17

Document Retrieval

Goal: Retrieve documents of interest

Challenges:
[Tons of articles out there

[J How should we measure similarity?

©Sham Kakade 2017 3

Task 1: Find Similar Documents

So far...

[J Input: Query article
1 Output: Set of k similar articles

©Sham Kakade 2017 4

4/25/17

Task 2: Cluster Documents

Now:
[Cluster documents based on topic

£2
G\

FIFA WORLD CUP
Brasil

©Sham Kakade 2017

= Auton’s Graphics

|

Some Data

x
a8

0.6 T

0.4 T

It
T

<+

1 0 0.2 0.4 0,6

0.8

<+

-+

x0

©Sham Kakade 2017

4/25/17

B

= Auton’s Graphics
K-means -
0.8 T
1. Ask user how many
clusters they’d like.
(e.g. k=5)
0.6 T
0.4 r
0.2 T
t + + + + +
A 0.2 0.4 0.6 0.8 1 0
©Sham Kakade 2017 7
_.i Auton’s Graphics G i |
K-means -
0.8 r
1. Ask user how many
clusters they’d like.
(e.g. k=5)
2. Randomly guess k o6 T
cluster Center
locations
0.4 T
0,2 r

It
T

0.2

} | it
t t

0.4 0,6

<+

0.8

-+

x0

©Sham Kakade 2017

4/25/17

Auton’s Graphics (==

K-means

Ask user how many
clusters they’d like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it’s
closest to. (Thus each
Center “owns” a set of
datapoints)

X
&

0,8

0.6

0.4

0,2

0.2 0.4 0,6 0,8 1

©Sham Kakade 2017 9

Auton’s Graphics]|

K-means

Ask user how many
clusters they’d like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it’s
closest to.

Each Center finds the
centroid of the points
it owns

P
s

0.8

0,6

0.4

0,2

It
T

<+
-+

0,2 0.4 0.6 0.8 1
x0

©Sham Kakade 2017 10

4/25/17

= Auton’s Graphics

RE0

X
&

K-means

Ask user how many 0.8 T
clusters they’d like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it’s
closest to.

04 T -

Each Center finds the
centroid of the points | 02
it owns...

-+
-+
-+

I
T
...and jumps there o 0.2 04 08 08

<+

x0

...Repeat until

terminated! ©Sham Kakade 2017

11

K-means
How o

/U J/L\/L;
gu,&,/(/7

Randomly initialize k centers

n@ = 1,0 00
Classify: Assign each pointj € {1,...N} to nearest
center:

2 argmin [|u; — I3

7

Recenter: |, becomes centroid of its point:

p Y e argmin > [— %73

a jizi=i

— Equivalent to p; < average of its points!

©Sham Kakade 2017

/7

12

4/25/17

Case Study 2: Document Retrieval

Parallel Programming
Map-Reduce

Machine Learning for Big Data
CSE547/STAT548, University of Washington

Sham Kakade
April , 2017

©Sham Kakade 2017 13

Needless to Say, We Need
Machine Learning for Big Data

You([T

1 Billion 72 Hours a Minute
Facebook Users YouTube

flickr

6 Billion o
Flickr Photos 28 Miillion
Wikipedia Pages

Ehe New JJork Eimes

- “... data a new class of economic asset,
SundayReview, |)
like currency or gold.

WORLD US. NY./REGION BUSINESS TEC

NEWS ANALYSIS

The Age of Big Data

©Sham Kakade 2017 14

4/25/17

CPUs Stopped Getting Faster...

[PLT7
10 ¥ |
o -
O 1z L N
D 1 m constant
ol 1 m
[7) T Qo
5 01 +— b]
a 3
¢ 1 =
S 1 -
0.01 } . !
[0] o o < O [e0) o o R O [e0] o
0] (2] ()] ()] (2] (2] o o o o o —
(o)) (o)} (@)} (o)) (o)) (o)} o o o o o o
— — — — — ~— (V] o o (o)l N N

release date

©Sham Kakade 2017 15

ML in the Context of Parallel Architectures

e amazon
webservices™
GPUs Multicore Clusters Clouds Supercomputers

* But scalable ML in these systems is hard, especially
in terms of:

1. Programmability
2. Data distribution
3. Failures

©Sham Kakade 2017 16

4/25/17

Programmability Challenge 1:
Designing Parallel Programs

e SGDfor LR:

— For each data point x:

w™ w4 { Xl + 6y = P(Y = 1s(x®), w)]}

/ ¢
A
©) (*%) Iy g <)
L/ — L — T —>
%m#b jﬁ 7L§ Z /77é >
)
/ [L) /C7 (w7
S & /
Cﬁgﬂbjj{ 77

Programmability Challenge 2:
Race Conditions

* We are used to sequential programs:

— Read data, think, write data, read data, think, write data, read data, think, write data, read data, think,
write data, read data, think, write data, read data, think, write data...

* But, in parallel, you can have non-deterministic effects:
— One machine reading data while other is writing

‘Q /g) /C'QJ (@}
/ [/ [/ (7
\3 L/ E 4//
+ Called 3 race-condition:
— Very annoying
— One of the hardest problems to debug in practice:
* because of non-determinism, bugs are hard to reproduce
©Sham Kakade 2017 18

4/25/17

Data Distribution Challenge

Accessing data:
— Main memory reference: 100ns (10-7s)
— Round trip time within data center: 500,000ns (5 * 10-4s)
— Disk seek: 10,000,000ns (10-2s)
Reading 1MB sequentially:
— Local memory: 250,000ns (2.5 * 10-4s)
— Network: 10,000,000ns (10-2s)
— Disk: 30,000,000ns (3*10-2s)

Conclusion: Reading data from local memory is much faster =» Must have data locality:
— Good data partitioning strategy fundamental!
— “Bring computation to data” (rather than moving data around)

©Sham Kakade 2017 19

Robustness to Failures Challenge

From Google’s Jeff Dean, about their clusters of 1800 servers, in first year of
operation:
— 1,000 individual machine failures
— thousands of hard drive failures
— one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
— 20 racks will fail, each time causing 40 to 80 machines to vanish from the network
— 5 racks will “go wonky,” with half their network packets missing in action
— the cluster will have to be rewired once, affecting 5 percent of the machines at any given moment over
a 2-day span
— 50% chance cluster will overheat, taking down most of the servers in less than 5 minutes and taking 1
to 2 days to recover

How do we design distributed algorithms and systems robust to
failures?

— It’s not enough to say: run, if there is a failure, do it again... because you may
never finish

©Sham Kakade 2017 20

4/25/17

10

Move Towards Higher-Level Abstraction

* Distributed computing challenges are hard and annoying!
1. Programmability
2. Data distribution
3. Failures
* High-level abstractions try to simplify distributed programming by hiding
challenges:

— Provide different levels of robustness to failures, optimizing data movement and
communication, protect against race conditions...

— Generally, you are still on your own WRT designing parallel algorithms
* Some common parallel abstractions:

— Lower-level:

Pthreads: abstraction for distributed threads on single machine

MPI: abstraction for distributed communication in a cluster of computers
— Higher-level:

Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
GraphLab: for graph-structured distributed problems

©Sham Kakade 2017 21

Simplest Type of Parallelism:
Data Parallel Problems .

* You have already learned a classifier Qv), {
t e 5o 1
— What'’s the test error? K 254

* You have 10B labeled documents and 1000 machines
Nz
o M

7 o 7

& ~J (Gt

m\\\\ﬁ [f/// e /v

@ft//

?/ ‘ '5?4/%(;

=

Tee. 9R

* Problems that can be broken into independent subproblems are called data-
parall embarrassingly par
* Map-Reduce is a great tool for this...

— Focus of today’s lecture
— but first a simple example

©Sham Kakade 2017 22

4/25/17

11

Counting Words on a Single Processor

* (This is the “Hello World!” of Map-Reduce)
* Suppose you have 10B documents and 1 machine

* You want to count the number of appearances of each word in this corpus
— Similar ideas useful for, e.g., building Naive Bayes classifiers and computing TF-IDF

* Code:

(@vﬂ4[3 T

F= (o

Lo A - Docyomat
fn N

LOJH+ ([/uo;/r,(> = 27

©Sham Kakade 2017 23

Naive Parallel Word Counting

. Simpleﬁta parallelism approach: /7 ' /M/
I °° G

«

T/ﬁ O, (\i)/ /E/)/ .,

A
VH[K \L /(‘3”4/}
> -
) Couh4 f‘vwc/\l

@“ - ‘f‘%«“"rowf/w}

!
[

* Merging hash tables: annoying, potentially not parallel = no
gain from parallelism???

©Sham Kakade 2017 24

4/25/17

12

Counting Words in Parallel & -~

Merging Hash Tables in Parallel ol

. 7 o w L\ .c
* Generate pairs (word,count)
* Merge counts for each word in parallel
- Thus/pwllel merging hash tables

/ A

<h

D - ,
7 7 g
- C - ' Cornt.,

. (WMJA Lo /\—’—;
= R
=] o |
o B e A
R S
) i Soom
6 ey 71) sV o MTcLl a 2 ol/o_ WD//(}
©Sham Kakade 2017 25
Map-Reduce Abstraction
« Map: /fﬂ/q A QLU\/‘ /< 2 /"'/'
— Data-parallel over elements, e.g., documents [z A/_u
— Generate (key,value) pairs
« “value” can be any data type 3 (/CQV/ e /u_(_) 3
VD@C oo _p 7L \—> ? f (\
i Cow 1) Gy
A
Reduce: | p
— Aggregate values for each key (U l’k/ 7 \ i
— Must be commutative-associate operation [
— Data-parallel over keys

— Generate (key,value) pairs

§
\) \) AN
(VW) o)
- Ve
e A v Ce . —>
a
<o (U \A//)r\) L
Map-Reduce has long history in functional programming
— But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

©Sham Kakade 2017 26

J

//o>

4/25/17

13

Map Code (Hadoop): Word Count

o £ VZ. < /c% 2 <5

public stapéélézzéé Map(fiﬁééé} Mapper<LongWritable, Text, Text, IntWritable> {
private “fi static ritable one = new IntWritable(l);

private Text word = new Text();

public void map(LongWritable key, Text value, Context context) throws <stuff>

String line = value.toString(Q); ’ﬁbtf\ Ccr L\

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) { .~ o— e 5 *L//xf;l
word.set(tokenizer.nextToken()); ;;L

context.write(word, one);

}} fnm:} (%W,VA//)

©Sham Kakade 2017 27

Reduce Code (Hadoop): Word Count

_[A e g €

public statiuce extends Reducer<Text, IntWritable,
Text, IntWritdbte

public void reduce(Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get(Q);

iontext.writeEfey,(hgwcéntWr}F?ble(sﬁmaa;H/ 1 / > f%,
\ /
€ /wq,’% (ﬁ VAN P ra :>

©Sham Kakade 2017 28

4/25/17

14

Map-Reduce Parallel Execution

©Sham Kakade 2017

29

Map-Reduce — Execution Qverview

% hég'(){,: >M4,‘«~7«ﬂ3

CN

P N
Split data

across machines
machine h[ki]

v

Y e/
\V' Map Phase Shuffle Phase Reduce Phase
(
/\\; (ke,va) (k1,v1)
g M1 _>(k2,V2) “ M1 _>(kz,V2)
U / (ke,vr) (ks,va)
7 M2 > (ky,vz) \ M2 = (i, v4)
o ‘ \ .
M
(]
oo
)

Assign tuple (k;,v;) to

(klm,vlm)
M1000 [(K Vi)

.. ©Sham Kakade 2017

(ks,vs)
M1000 —> (ks,VG)

-

30

4/25/17

15

Map-Reduce — Robustness to Failures 1:
Protecting Data: Saye T/? Dpi/slngonstantIy
o)

L / ¢
Map Phase Shuffle Phase Reduce Phase \ 1
/\ (ka,v1) (ka,v1) re ’75 de é(c
Ml = (k2,v2) —> (ka,v2)
v ¢«
U / (kv,vr) (ks,v3) /
/ M2 > (k2v2) 7 o —> (ka,va) ﬁ)
g Tz)
&5 £
© < g e e Co™ /L,vY/' v 2
® N5 2%
o S c @ .
@ . & £
b%o A g s - f/Ll O J/
VL ‘L o +: “
Cve 7
(kervr) o ls Ao i
m1000 = (k27,v2"" —> (ke V6) .
©Sham Kakade 2017 31

Distributed File Systems

¢ Saving to disk log is not enough = If disk or machine faicli, all data is lost
Replicate data among multiple machinesl/ﬁ v

> ¥ a /‘\

\3 V). fa 5

. . ht
automatically replicated

T

T

Distributed File System (DFS)
i file from anyw

— Can read a file from anywhere =» read from closest copy
« If failure, try next closest copy

e Common implementations:
— Google File System (GFS)
— Hadoop File System (HDFS)

* Important practical considerations:
— Write large files

* Many small files = becomes way too slow
— Typically, files can’t be “modified”, just “replaced” =» makes robustness much simpler

©Sham Kakade 2017 32

4/25/17

16

Map-Reduce — Robustness to Failures 2:
Recovering From Failures: Read from DFS

initial distribution

M1 = (k::v:]
U / ~— & shuffle phase

[\ Map Phase Shuffle Phase Reduce Phase e« Communication in

“automatic”

M2 élkz‘:vz‘) .
— Done by DFS

e |If failure, don’t
restart everything
— Otherwise,

\j woo =3 (kerar) o never finish
Pl -Wstart ‘

/ Map/Reduce jobs
% in dead machines

©Sham Kakade 2017 33

Big Data

Improving Performance:

* Naive implementation of M-R very wasteful in communication during shuffle:

/
(V) - ﬁ/'uw// 2)
N1 (*I
“ 4 AL

[) l
(lon)
7
* Combiner: Simple solution, perform reduce locally before communicating

for global reduce
— Works because reduce is commutative-associative

©Sham Kakade 2017 34

4/25/17

17

(A few of the) Limitations of Map-Reduce

E.g., reducers don’t start
mappers are done

* “Too much” robustness
— Writing to disk all the time

* Not all problems fit in
Map-Reduce

— E.g., you can’t communicate
between mappers

* Oblivious to structure in data

— E.g., if datais a graph, can be
much more efficient

* For example, no need to shuffle nearly as much

Map Phase Shuffle Phase
[\ (ka,v1)
M1 = (kz,v2)

U (kvvr)

M2 = (kv2)

Split data
across machines

Assign tuple (ki,vi) to
machine h[ki]

Big Data

(kv va)
w000 = (ko)

olce
* Nonetheless, extremely useful; JD g o o 7‘/4 .
industry standard for Big Data T ;@/ Y
— Though many many companies are moving] ‘}C <s /\ p(/(

away from Map-Reduce (Hadoop)

©Sham Kakade 2017

Reduce Phase

SJona M~ st

35

(ka,v1)

> (ko,v2)

(ks,v3)

= (ks,vi)

(ks,vs)

= (ks,vs)

What you need to know about Map-Reduce

* Distributed computing challenges are hard and annoying!

1. Programmability
2. Data distribution
3. Failures

* High-level abstractions help a lot!
* Data-parallel problems & Map-Reduce

* Map:
— Data-p. € ion of data
Parallel over data points
* Reduce:
— Data-parall egation of data

Parallel over keys

* Combiner helps reduce communication

* Distributed execution of Map-Reduce:

— Map, shuffle, reduce

— Robustness to failure by writing to disk

— Distributed File Systems

©Sham Kakade 2017

36

4/25/17

18

Case Study 2: Document Retrieval

Parallel K-Means on
Map-Reduce

Machine Learning for Big Data
CSE547/STAT548, University of Washington

©Sham Kakade 2017

Sham Kakade
April , 2017

37

Map-Reducing One lteration of K-Means

Classify: Assign each pointj € {1,...N} to nearest center:
2 argmin ||p; — x'|[3
K

* Recenter: |; becomes centroid of its point:

(t+1) . 7112
: 4 arg min E — X
122 g m j'zj:iHN ||2 tfg“/

— Equivalent to L < average of its points! $

M Map: c /a S J ~ , QW\C\{_ Ju
/ﬁo/ Qqc(‘v]/o(\’x—* ({//fkj Xu> _ (2 P
e R d : (O"V\)”‘/GLL\’\
educe: . (7 2
o T N R

©Sham Kakade 2017

J

xd)

F’./,..\>~

38

4/25/17

19

4/25/17

Classification Step as Map

Classify: Assign each pointj € {1,...,N} to nearest center:

27 argmin [|u; — x|
K2

Map:mﬂw[{/ﬁ—\\/ //7;3/ XJ >

©Sham Kakade 2017 39

Recenter Step as Reduce

Recenter: ; becomes centroid of its point:
t+1 . i
Y e argmin 37 [lu— |3
Jizi=1
- Egi)valent to i < average of its points!
L SN =D

. ReduceQ:%“ / . /j 7%)

/

S)

© T 4o
)/‘Q’I/\///w §L/M/' -

[<

-

©Sham Kakade 2017 40

20

Some Practical Considerations

* K-Means needs an iterative version of Map-Reduce
— Not standard formulation

* Keep Map-Reduce, without restarting every iteration?

*/Parameter servers?
ms needed achines

©Sham Kakade 2017 41

What you need to know about
Parallel K-Means on Map-Reduce

* Map: classification step;
data parallel over data points

* Reduce: recompute means;
data parallel over centers

©Sham Kakade 2017 42

4/25/17

21

