Case Study 2: Document Retrieval

Clustering Documents

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 20, 2017

©Sham Kakade 2017

Announcements:

- HW2 posted, due Mon, May 1
- Project Milestones, due Mon, May 8
- Plug for a talk
 - Talk: Accelerating Stochastic Gradient Descent
 - Tue at 1:30 in CSE 303
 - It's a very promising directions....
- Today:
 - Review: map-reduce
 - Today: clustering and map-reduce

start

Irentmant

of

opt. in

the

ibig Anta"

regime

©Kaka@e 2017

Document Retrieval

- Goal: Retrieve documents of interest
- Challenges:
 - ☐ Tons of articles out there
 - ☐ How should we measure similarity?

©Sham Kakade 2017

3

Task 1: Find Similar Documents

- So far...
 - □ Input: Query article

□ **Output:** Set of k similar articles

©Sham Kakade 2017

K-means 0,8 1. Ask user how many clusters they'd like. (e.g. k=5)0.6 2. Randomly guess k cluster Center locations 3. Each datapoint finds 0.4 out which Center it's closest to. (Thus each Center "owns" a set of 0.2 datapoints)

©Sham Kakade 2017

0.6

0.8

1 _{x0}

K-means

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

K-means

• Randomly initialize k centers $\mu^{(0)} = \mu_1^{(0)}, ..., \mu_k^{(0)}$

• **Classify**: Assign each point *j* ∈ {1,...*N*} to nearest center:

$$z^j \leftarrow \arg\min_i ||\mu_i - \mathbf{x}^j||_2^2$$

• Recenter: μ_i becomes centroid of its point:

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:z^j=i} ||\mu - \mathbf{x}^j||_2^2$$

– Equivalent to μ_i — average of its points!

©Sham Kakade 2017

Case Study 2: Document Retrieval

Parallel Programming Map-Reduce

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April , 2017

©Sham Kakade 2017

13

Needless to Say, We Need Machine Learning for Big Data

28 Million Wikipedia Pages 1 Billion Facebook Users

72 Hours a Minute YouTube

The Age of Big Data

By STEVE LOHR Published: February 11, 2012 "... data a new class of economic asset, like currency or gold."

©Sham Kakade 2017

Programmability Challenge 1: Designing Parallel Programs

- SGD for LR:
 - For each data point $\mathbf{x}^{(t)}$:

Programmability Challenge 2: Race Conditions

- We are used to sequential programs:
 - Read data, think, write data, read data, think, write data...
- But, in parallel, you can have non-deterministic effects:
 - One machine reading data while other is writing

- Called a race-condition:
 - Very annoying
 - One of the hardest problems to debug in practice:
 - because of non-determinism, bugs are hard to reproduce

©Sham Kakade 2017

Data Distribution Challenge

- Accessing data:
 - Main memory reference: 100ns (10-7s)
 - Round trip time within data center: 500,000ns (5 * 10-4s)
 - Disk seek: 10,000,000ns (10-2s)
- · Reading 1MB sequentially:
 - Local memory: 250,000ns (2.5 * 10-4s)
 - Network: 10,000,000ns (10⁻²s)
 - Disk: 30,000,000ns (3*10-2s)
- Conclusion: Reading data from local memory is much faster → Must have data locality:
 - Good data partitioning strategy fundamental!
 - "Bring computation to data" (rather than moving data around)

©Sham Kakade 2017

19

Robustness to Failures Challenge

- From Google's Jeff Dean, about their clusters of 1800 servers, in first year of operation:
 - 1,000 individual machine failures
 - thousands of hard drive failures
 - one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
 - 20 racks will fail, each time causing 40 to 80 machines to vanish from the network
 - 5 racks will "go wonky," with half their network packets missing in action
 - the cluster will have to be rewired once, affecting 5 percent of the machines at any given moment over a 2-day span
 - 50% chance cluster will overheat, taking down most of the servers in less than 5 minutes and taking 1 to 2 days to recover
- How do we design distributed algorithms and systems robust to failures?
 - It's not enough to say: run, if there is a failure, do it again... because you may never finish

©Sham Kakade 2017

Move Towards Higher-Level Abstraction

- Distributed computing challenges are hard and annoying!
 - Programmability
 - Data distribution
 - **Failures**
- High-level abstractions try to simplify distributed programming by hiding challenges:
 - Provide different levels of robustness to failures, optimizing data movement and communication, protect against race conditions...
 - Generally, you are still on your own WRT designing parallel algorithms
- Some common parallel abstractions:
 - Lower-level:
 - · Pthreads: abstraction for distributed threads on single machine
 - MPI: abstraction for distributed communication in a cluster of computers
 - Higher-level:
 - Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
 - GraphLab: for graph-structured distributed problems

©Sham Kakade 2017

21

Simplest Type of Parallelism: Data Parallel Problems You have already learned a classifier Very death of the state of the st

- - What's the test error?
- You have 10B labeled documents and 1000 machines

- Problems that can be broken into independent subproblems are called dataparallel (or embarrassingly parallel)
- Map-Reduce is a great tool for this...
 - Focus of today's lecture
 - but first a simple example

Counting Words on a Single Processor

- (This is the "Hello World!" of Map-Reduce)
- Suppose you have 10B documents and 1 machine
- You want to count the number of appearances of each word in this corpus - Similar ideas useful for, e.g., building Naïve Bayes classifiers and computing TF-IDF
- Code:

©Sham Kakade 2017

23

Naïve Parallel Word Counting

Simple data parallelism approach: $\mathcal{M}_{\mathcal{C}}$

Merging hash tables: annoying, potentially not parallel → no gain from parallelism???

©Sham Kakade 2017

Map-Reduce Parallel Execution

©Sham Kakade 2017

Distributed File Systems • Saving to disk locally is not enough → If disk or machine fails, all data is lost Replicate data among multiple machines! • Distributed File System (DFS) • Write a file from anywhere → automatically replicated • Can read a file from anywhere → read from closest copy • If failure, try next closest copy • Common implementations: • Google File System (GFS) • Hadoop File System (HDFS) • Important practical considerations: • Write large files • Many small files → becomes way too slow • Typically, files can't be "modified", just "replaced" → makes robustness much simpler

Map-Reduce – Robustness to Failures 2: Recovering From Failures: **Read from DFS**

- Communication in initial distribution & shuffle phase "automatic"
 - Done by DFS
- If failure, don't restart everything
 - Otherwise,
 never finish
- Only restart
 Map/Reduce jobs
 in dead machines

33

Improving Performance: Combiners

• Naïve implementation of M-R very wasteful in communication during shuffle:

- Combiner: Simple solution, perform reduce locally before communicating for global reduce
 - Works because reduce is commutative-associative

©Sham Kakade 2017

What you need to know about Map-Reduce

- Distributed computing challenges are hard and annoying!
 - Programmability
 - Data distribution
 - Failures
- High-level abstractions help a lot!
- Data-parallel problems & Map-Reduce
- Map:
 - Data-parallel transformation of data

Parallel over data points

- Reduce:
 - Data-parallel aggregation of data

Parallel over keys

- Combiner helps reduce communication
- Distributed execution of Map-Reduce:
 - Map, shuffle, reduce
 - Robustness to failure by writing to disk
 - Distributed File Systems

Case Study 2: Document Retrieval

Parallel K-Means on Map-Reduce

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April, 2017

©Sham Kakade 2017

Map-Reducing One Iteration of K-Means

• Classify: Assign each point $j \in \{1,...N\}$ to nearest center:

$$z^j \leftarrow \arg\min_i ||\mu_i - \mathbf{x}^j||_2^2$$

Recenter: μ_i becomes centroid of its point:

$$\mu_{i}^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:z^{j}=i} ||\mu - \mathbf{x}^{j}||_{2}^{2}$$

$$- \text{ Equivalent to } \mu_{i} \leftarrow \text{ average of its points!}$$

$$\bullet \quad \text{Map: } c \mid_{4} \leq \leq \leq d \quad \text{for each point} \quad \text{(if } \mu \leq \leq \leq d \text{ is } \text{(if } \mu \leq \leq d \text{(if } \mu \leq \leq \leq d \text{(if } \mu \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq d \text{(if } \mu \leq \leq \leq \leq \leq d \text{(if } \mu \leq \leq d \text{(if } \mu \leq \leq \leq d \text{(if } \mu \leq d \text{(if } \mu \leq \leq d$$

Classification Step as Map

Classify: Assign each point $j \in \{1,...,N\}$ to nearest center:

$$z^j \leftarrow \arg\min_i ||\mu_i - \mathbf{x}^j||_2^2$$

• Map:

zi e argmiz ((µ:- x; //2 ² em:+ (z ; x;))

©Sham Kakade 2017

Recenter Step as Reduce

Recenter: μ_i becomes centroid of its point:

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:z^j=i} ||\mu - \mathbf{x}^j||_2^2$$

– Equivalent to μ_i \longleftarrow average of its points!

• Reduce: \(\tau_{i,j} \) \(\tau_{i,j} \)

Some Practical Considerations

- K-Means needs an iterative version of Map-Reduce
 - Not standard formulation
- Keep Map-Reduce, without restarting every iteration?
- Parameter servers?
 - Params needed by all machines

©Sham Kakade 2017

41

What you need to know about Parallel K-Means on Map-Reduce

- Map: classification step;
 data parallel over data points
- Reduce: recompute means; data parallel over centers

©Sham Kakade 2017