Case Study 2: Document Retrieval

Clustering Documents

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Sham Kakade
April 20, 2017

Announcements:

• HW2 posted, due Mon, May 1
• Project Milestones, due Mon, May 8

• Plug for a talk
 – Talk: Accelerating Stochastic Gradient Descent
 – Tue at 1:30 in CSE 303
 – It’s a very promising directions….

• Today:
 – Review: map-reduce
 – Today: clustering and map-reduce

©Kakade 2017
Document Retrieval

- **Goal:** Retrieve documents of interest
- **Challenges:**
 - Tons of articles out there
 - How should we measure similarity?

Task 1: Find Similar Documents

- **So far...**
 - **Input:** Query article
 - **Output:** Set of k similar articles
Task 2: Cluster Documents

- **Now:**
 - Cluster documents based on topic

Some Data
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*

2. Randomly guess k cluster Center locations
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it’s closest to. (Thus each Center “owns” a set of datapoints)
4. Each Center finds the centroid of the points it owns
K-means

1. Ask user how many clusters they’d like. *(e.g. \(k=5\))*
2. Randomly guess \(k\) cluster Center locations
3. Each datapoint finds out which Center it’s closest to.
4. Each Center finds the centroid of the points it owns...
5. ...and jumps there
6. ...Repeat until terminated!

K-means

- Randomly initialize \(k\) centers
 \[\mu^{(0)} = \mu_1^{(0)}, \ldots, \mu_k^{(0)} \]

- **Classify**: Assign each point \(j \in \{1, \ldots, N\}\) to nearest center:
 \[z^j \leftarrow \arg \min_i ||\mu_i - x^j||_2^2 \]

- **Recenter**: \(\mu_i\) becomes centroid of its point:
 \[\mu_i^{(t+1)} \leftarrow \arg \min_\mu \sum_{j:z^j=i} ||\mu - x^j||_2^2 \]
 - Equivalent to \(\mu_i \leftarrow\) average of its points!
Case Study 2: Document Retrieval

Parallel Programming
Map-Reduce

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Sham Kakade
April, 2017

©Sham Kakade 2017

Needless to Say, We Need Machine Learning for Big Data

flickr
28 Million
Wikipedia Pages
1 Billion
Facebook Users
72 Hours a Minute
YouTube

“... data a new class of economic asset, like currency or gold.”

©Sham Kakade 2017
CPUs Stopped Getting Faster…

ML in the Context of Parallel Architectures

- But scalable ML in these systems is hard, especially in terms of:
 1. Programmability
 2. Data distribution
 3. Failures
Programmability Challenge 1: Designing Parallel Programs

- SGD for LR:
 - For each data point $x^{(t)}$:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + \phi_i(x^{(t)})[y^{(t)} - P(Y = 1|\phi(x^{(t)}), w^{(t)}))] \right\}$$

- Race Conditions
 - We are used to sequential programs:
 - Read data, think, write data, read data, think, write data, read data, think, write data...
 - But, in parallel, you can have non-deterministic effects:
 - One machine reading data while other is writing
 - Called a race-condition:
 - Very annoying
 - One of the hardest problems to debug in practice:
 - because of non-determinism, bugs are hard to reproduce
Data Distribution Challenge

- Accessing data:
 - Main memory reference: 100ns (10^{-7}s)
 - Round trip time within data center: 500,000ns (5 * 10^{-4}s)
 - Disk seek: 10,000,000ns (10^{-2}s)

- Reading 1MB sequentially:
 - Local memory: 250,000ns (2.5 * 10^{-4}s)
 - Network: 10,000,000ns (10^{-2}s)
 - Disk: 30,000,000ns (3*10^{-2}s)

- Conclusion: Reading data from local memory is much faster ➔ Must have data locality:
 - Good data partitioning strategy fundamental!
 - “Bring computation to data” (rather than moving data around)

Robustness to Failures Challenge

- From Google’s Jeff Dean, about their clusters of 1800 servers, in first year of operation:
 - 1,000 individual machine failures
 - thousands of hard drive failures
 - one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
 - 20 racks will fail, each time causing 40 to 80 machines to vanish from the network
 - 5 racks will “go wonky,” with half their network packets missing in action
 - the cluster will have to be rewired once, affecting 5 percent of the machines at any given moment over a 2-day span
 - 50% chance cluster will overheat, taking down most of the servers in less than 5 minutes and taking 1 to 2 days to recover

- How do we design distributed algorithms and systems robust to failures?
 - It’s not enough to say: run, if there is a failure, do it again... because you may never finish
Move Towards Higher-Level Abstraction

• Distributed computing challenges are hard and annoying!
 1. Programmability
 2. Data distribution
 3. Failures
• High-level abstractions try to simplify distributed programming by hiding challenges:
 – Provide different levels of robustness to failures, optimizing data movement and communication, protect against race conditions...
 – Generally, you are still on your own WRT designing parallel algorithms
• Some common parallel abstractions:
 – Lower-level:
 • Pthreads: abstraction for distributed threads on single machine
 • MPI: abstraction for distributed communication in a cluster of computers
 – Higher-level:
 • Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
 • GraphLab: for graph-structured distributed problems

Simplest Type of Parallelism: Data Parallel Problems

• You have already learned a classifier
 – What’s the test error?
• You have 10B labeled documents and 1000 machines

• Problems that can be broken into independent subproblems are called data-parallel (or embarrassingly parallel)
• Map-Reduce is a great tool for this...
 – Focus of today’s lecture
 – but first a simple example
Counting Words on a Single Processor

• (This is the “Hello World!” of Map-Reduce)
• Suppose you have 10B documents and 1 machine
• You want to count the number of appearances of each word in this corpus
 – Similar ideas useful for, e.g., building Naïve Bayes classifiers and computing TF-IDF
• Code:

```
count[w] = init a hash table
for d in Documents:
  for w in d:
    count[w] += 2
```

Naïve Parallel Word Counting

• Simple data parallelism approach:

 - Merging hash tables: annoying, potentially not parallel \(\Rightarrow \) no gain from parallelism???
Counting Words in Parallel & Merging Hash Tables in Parallel

- Generate pairs (word,count)
- Merge counts for each word in parallel
 - Thus parallel merging hash tables

Map-Reduce Abstraction

- Map:
 - Data-parallel over elements, e.g., documents
 - Generate (key,value) pairs
 - "value" can be any data type

 - Map: Document → \{ (\text{'u'}, 1), (\text{'u'}, 1), (\text{'w'}, 1), (\text{'w'}, 1), ... \}

- Reduce:
 - Aggregate values for each key
 - Must be commutative-associate operation
 - Data-parallel over keys
 - Generate (key,value) pairs

 - Reduce \{ (\text{'u'}, 1), (\text{'u'}, 1) \} → (\text{'u'}, 1)

- Map-Reduce has long history in functional programming
 - But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!
Map Code (Hadoop): Word Count

```java
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(LongWritable key, Text value, Context context) throws <stuff> {
        String line = value.toString();
        StringTokenizer tokenizer = new StringTokenizer(line);
        while (tokenizer.hasMoreTokens()) {
            word.set(tokenizer.nextToken());
            context.write(word, one);
        }
    }
}
```

Reduce Code (Hadoop): Word Count

```java
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

    public void reduce(Text key, Iterable<IntWritable> values, Context context)
            throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        context.write(key, new IntWritable(sum));
    }
}
```
Map-Reduce Parallel Execution

Map-Reduce – Execution Overview

Map Phase
- M1
 - (k1,v1)
 - (k2,v2)
 - ...
- M2
 - (k1,v1)
 - (k2,v2)
 - ...
- M1000
 - (k1,v1)
 - (k2,v2)
 - ...

Shuffle Phase
- Assign tuple (k,v) to machine M[i]

Reduce Phase
- M1
 - (k1,v1)
 - (k2,v2)
 - ...
- M2
 - (k3,v3)
 - (k4,v4)
 - ...
- M1000
 - (k5,v5)
 - (k6,v6)
 - ...

Split data across machines
Map-Reduce – Robustness to Failures 1: Protecting Data: **Save To Disk Constantly**

Map Phase

Shuffle Phase

Reduce Phase

Distributed File Systems

- Saving to disk locally is not enough
 if disk or machine fails, all data is lost
- Replicate data among multiple machines!
- **Distributed File System (DFS)**
 - Write a file from anywhere
 automatically replicated
 - Can read a file from anywhere
 read from closest copy
 - If failure, try next closest copy

- Common implementations:
 - Google File System (GFS)
 - Hadoop File System (HDFS)

- Important practical considerations:
 - Write large files
 - Many small files becomes way too slow
 - Typically, files can’t be "modified", just "replaced"
 makes robustness much simpler

©Sham Kakade 2017
Map-Reduce – Robustness to Failures 2: Recovering From Failures: Read from DFS

- Communication in initial distribution & shuffle phase “automatic”
 - Done by DFS
- If failure, don’t restart everything
 - Otherwise, never finish
- Only restart Map/Reduce jobs in dead machines

Improving Performance: Combiners

- Naïve implementation of M-R very wasteful in communication during shuffle:

- **Combiner**: Simple solution, perform reduce locally before communicating for global reduce
 - Works because reduce is commutative-associative
(A few of the) Limitations of Map-Reduce

- Too much synchrony
 - E.g., reducers don’t start until all mappers are done

- "Too much" robustness
 - Writing to disk all the time

- Not all problems fit in Map-Reduce
 - E.g., you can’t communicate between mappers

- Oblivious to structure in data
 - E.g., if data is a graph, can be much more efficient
 - For example, no need to shuffle nearly as much

- Nonetheless, extremely useful; industry standard for Big Data
 - Though many many companies are moving away from Map-Reduce (Hadoop)

What you need to know about Map-Reduce

- Distributed computing challenges are hard and annoying!
 1. Programmability
 2. Data distribution
 3. Failures

- High-level abstractions help a lot!
- Data-parallel problems & Map-Reduce
- Map:
 - Data-parallel transformation of data
 - Parallel over data points
- Reduce:
 - Data-parallel aggregation of data
 - Parallel over keys

- Combiner helps reduce communication
- Distributed execution of Map-Reduce:
 - Map, shuffle, reduce
 - Robustness to failure by writing to disk
 - Distributed File Systems
Parallel K-Means on Map-Reduce

Map-Reducing One Iteration of K-Means

- **Classify**: Assign each point \(j \in \{1,...,N\} \) to nearest center:
 \[
 z^j \leftarrow \arg\min_i ||\mu_i - x^j||^2_2
 \]

- **Recenter**: \(\mu_i \) becomes centroid of its point:
 \[
 \mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j: z^j = i} ||\mu - x^j||^2_2
 \]
 - Equivalent to \(\mu_i \leftarrow \text{average of its points} \)

- **Map**: for each point \((\mu_i, x^j) \) map to \((z^j, x^j) \)

- **Reduce**: addition to \(\text{un-normalized} \)
Classification Step as Map

- **Classify**: Assign each point \(j \in \{1, \ldots, N\} \) to nearest center:
 \[
 z^j \leftarrow \arg \min_i ||\mu_i - x^j||_2^2
 \]

- **Map**:
 \[
 \begin{bmatrix}
 \bar{x}_1 & \cdots & \bar{x}_c \\
 \end{bmatrix} \times \begin{bmatrix}
 z^1 \\
 \vdots \\
 z^c \\
 \end{bmatrix}
 \]
 \[
 z^j = \arg \min_i (||\mu_i - x^j||_2^2)
 \]
 \[
 e_m \leftarrow (z^j \times j)
 \]

Recenter Step as Reduce

- **Recenter**: \(\mu_i \) becomes centroid of its point:
 \[
 \mu_i^{(t+1)} \leftarrow \arg \min_i \sum_j ||\mu - x^j||_2^2
 \]
 - Equivalent to \(\mu_i \leftarrow \) average of its points!
 \[
 \text{sum} \leftarrow \sum X_i
 \]

- **Reduce**:
 \[
 \begin{bmatrix}
 x^1 & \cdots & x^t
 \end{bmatrix}
 \]
 \[
 \text{return sum + x}
 \]
Some Practical Considerations

• K-Means needs a* iterative version of Map-Reduce
 – Not standard formulation

• Keep Map-Reduce, without restarting every iteration?

• Parameter servers?
 – Params needed by all machines

What you need to know about Parallel K-Means on Map-Reduce

• Map: classification step;
 data parallel over data points

• Reduce: recompute means;
 data parallel over centers