Case Study 2: Document Retrieval

Task Description: Finding Similar Documents

Announcements:

- HW1 due
- Project Milestones
 - Start early
 - Lit. review (>= 3 papers read carefully)
 - First rounds of experiments

- Today:
 - Review: Hash kernels
 - Today: similarity search, k-NNs, KD-trees
Document Retrieval

- **Goal:** Retrieve documents of interest
- **Challenges:**
 - Tons of articles out there
 - How should we measure similarity?

Task 1: Find Similar Documents

- **To begin...**
 - **Input:** Query article
 - **Output:** Set of k similar articles
Document Representation

- Bag of words model

\[X = \begin{bmatrix} w_1 & \cdots & w_d \end{bmatrix} \in \mathbb{R}^{n \times d} \]

“Bag of words” - word count of words; ignore word order.

©Sham Kakade 2017

Image Search...

Organic Authority
5 Bitter Melon Recipes: The Ancient Healing Fruit
bitter melon stir fry
Images may be subject to copyright.

Visit page Share
1-Nearest Neighbor

- Articles: $X = \{x^1, \ldots, x^N\}, \quad x^i \in \mathbb{R}^d$
- Query: $x \in \mathbb{R}^d$
- 1-NN
 - Goal: Find $x' \in K \setminus \{x\}$ closest to x.
 - Formulation:
 $$d(x', x) = \min_{x' \in K \setminus \{x\}} d(x', x)$$

k-Nearest Neighbor

- Articles: $X = \{x^1, \ldots, x^N\}, \quad x^i \in \mathbb{R}^d$
- Query: $x \in \mathbb{R}^d$
- k-NN
 - Goal: Find k closest elements in X.
 - Formulation:
Distance Metrics – Euclidean

\[d(u, v) = \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2} \]

Or, more generally,

\[d(u, v) = \sqrt{\sum_{i=1}^{d} \sigma_i^2 (u_i - v_i)^2} \]

Equivalently,

\[d(u, v) = \sqrt{(u - v)' \Sigma (u - v)} \]

where \(\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_d^2 \end{bmatrix} \)

Other Metrics...
- Mahalanobis, Rank-based, Correlation-based, cosine similarity...

Notable Distance Metrics
(and their level sets)

\[L_1 \] norm (absolute)

\[L_\infty \] norm (max)

Scaled Euclidian (\(L_2 \))

Mahalanobis
(\(\Sigma \) is general sym pos def matrix, on previous slide = diagonal)
Euclidean Distance + Document Retrieval

- Recall distance metric
 \[d(u, v) = \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2} \]

- What if each document were \(\alpha \) times longer?
 - Scale word count vectors
 - What happens to measure of similarity?

- Good to normalize vectors

Issues with Document Representation

- Words counts are bad for standard similarity metrics

- Term Frequency – Inverse Document Frequency (tf-idf)
 - Increase importance of rare words

©Sham Kakade 2017
TF-IDF

- Term frequency:
 \[tf(t, d) = \frac{\text{# occurrences of } t \text{ in } d}{\text{term length}} \]
 - Could also use \(\{0, 1\} \cdot 1 + \log f(t, d) \).
- Inverse document frequency:
 \[\text{idf}(t, D) = \frac{N}{\log |\{d \in D : t \in d\}|} \]
- tf-idf:
 \[\text{tfidf}(t, d, D) = tf(t, d) \times idf(t, D) \]
 - High for document \(d \) with high frequency of term \(t \) (high "term frequency") and few documents containing term \(t \) in the corpus (high "inverse doc frequency")

Issues with Search Techniques

- Naïve approach:
 - Brute force search
 - Given a query point \(x \)
 - Scan through each point \(x^i \)
 - \(O(N) \) distance computations per 1-NN query!
 - \(O(N\log k) \) per \(k \)-NN query!

- What if \(N \) is huge???
 (and many queries)
Think about Web Search/Image Search

- How big is N?

- How fast do we desire to do recall?

Intuition (?): NN in 1D and Sorting

- How do we do 1-NN searches in 1 dim?

- Pre-processing time:
 - $O(N)$
 - $O(N \log N)$

- Query time:
 - $O(1)$
 - $O(\log N)$
Smarter approach: **kd-trees**

- Structured organization of documents
 - Recursively partitions points into axis aligned boxes.
- Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.

kd-trees work “well” in “low-medium” dimensions

- We’ll get back to this...

KD-Tree Construction

- Start with a list of d-dimensional points.
KD-Tree Construction

- Split the points into 2 groups by:
 - Choosing dimension d_j and value V (methods to be discussed...)
 - Separating the points into $x_{d_j}^i > V$ and $x_{d_j}^i <= V$.

- Consider each group separately and possibly split again (along same/different dimension).
 - Stopping criterion to be discussed...
Consider each group separately and possibly split again (along same/different dimension).

- Stopping criterion to be discussed...

Continue splitting points in each set

- creates a binary tree structure
- Each leaf node contains a list of points
Keep one additional piece of information at each node:

- The (tight) bounds of the points at or below this node.

Use heuristics to make splitting decisions:
- Which dimension do we split along?
- Which value do we split at?
- When do we stop?
Many heuristics...

median heuristic

center-of-range heuristic

Nearest Neighbor with KD Trees

- Traverse the tree looking for the nearest neighbor of the query point.
Examine nearby points first:
- Explore branch of tree closest to the query point first.
When we reach a leaf node:
- Compute the distance to each point in the node.
Then backtrack and try the other branch at each node visited

Each time a new closest node is found, update the distance bound
Using the distance bound and bounding box of each node:
- Prune parts of the tree that could NOT include the nearest neighbor
Nearest Neighbor with KD Trees

- Using the distance bound and bounding box of each node:
 - Prune parts of the tree that could NOT include the nearest neighbor

Complexity

- For (nearly) balanced, binary trees...
- Construction
 - Size:
 - Depth:
 - Median + send points left right:
 - Construction time:
- 1-NN query
 - Traverse down tree to starting point:
 - Maximum backtrack and traverse:
 - Complexity range:

- Under some assumptions on distribution of points, we get $O(\log N)$ but exponential in d (see citations in reading)
Complexity

Complexity for N Queries

- Ask for nearest neighbor to each document
- Brute force 1-NN:
- kd-trees:
Inspections vs. N and d

K-NN with KD Trees

- Exactly the same algorithm, but maintain distance as distance to furthest of current k nearest neighbors
- Complexity is:
Approximate K-NN with KD Trees

- **Before:** Prune when distance to bounding box >
- **Now:** Prune when distance to bounding box >
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance r, then there is no neighbor closer than r / α.
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.

Cover trees (+ ball trees)

- What about exact NNs searches in high dimensions?
- Idea: utilize triangle inequality of metric (so allow for arbitrary metric)
- cover-tree guarantees:
Cover trees: what does the triangle inequality imply?

Cover trees: data structure
Wrapping Up – Important Points

kd-trees
- Tons of variants
 - On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g., cover trees, ball trees,...)

Nearest Neighbor Search
- Distance metric and data representation are crucial to answer returned

For both...
- High dimensional spaces are hard!
 - Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... $N \gg 2^d$... Typically useless.
 - Distances are sensitive to irrelevant features
 - Most dimensions are just noise → Everything equidistant (i.e., everything is far away)
 - Need technique to learn what features are important for your task

What you need to know

- Document retrieval task
 - Document representation (bag of words)
 - tf-idf

- Nearest neighbor search
 - Formulation
 - Different distance metrics and sensitivity to choice
 - Challenges with large N

- kd-trees for nearest neighbor search
 - Construction of tree
 - NN search algorithm using tree
 - Complexity of construction and query
 - Challenges with large d
Acknowledgment

- This lecture contains some material from Andrew Moore’s excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials
- In particular, see:
 - http://grist.caltech.edu/sc4devo/.../files/sc4devo_scalable_datamining.ppt