Case Study 2: Document Retrieval

Task Description: Finding Similar Documents

or Iniges

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 11, 2017

©Sham Kakade 2017

Announcements:

- HW1 due
- Project Milestones
 - Start early
 - Lit. review (>= 3 papers read carefully)
 - First rounds of experiments
- Today:
 - Review: Hash kernels
 - Today: similarity search, k-NNs, KD-trees

©Kaka@e 2017

Document Retrieval

- **Goal:** Retrieve documents of interest
- Challenges:
 - ☐ Tons of articles out there
 - ☐ How should we measure similarity?

©Sham Kakade 2017

3

Task 1: Find Similar Documents

- To begin...
 - □ Input: Query article
 - □ **Output:** Set of *k* similar articles

©Sham Kakade 2017

1-Nearest Neighbor

- Articles \leq $\times = \{ \times^1 \cdots \times^n \}$
- Query:
- **1-NN**

©Sham Kakade 2017

k-Nearest Neighbor

- $\quad \blacksquare \ \, \text{Articles} \quad X = \{x^1, \dots, x^N\}, \quad x^i \in \mathbb{R}^d$
- Query: $x \in \mathbb{R}^d$
- k-NN

 □ Goal: find K closest itoms in X
 - □ Formulation:

©Sham Kakade 2017

Distance Metrics - Euclidean

$$d(u, v) = \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2}$$

Or, more generally, $d(u,v) = \sqrt{\sum_{i=1}^d \sigma_i^2 (u_i - v_i)^2}$ Equivalently,

Other Metrics...

Mahalanobis, Rank-based, Correlation-based, cosine similarity...

©Sham Kakade 2017

Notable Distance Metrics
(and their level sets)

Scaled Euclidian (L₂)

Mahalanobis
(∑ is general sym pos def matrix, on previous slide = diagonal)

Scaled Euclidian (L₂)

L₁ norm (absolute)

L₂ (max) norm

Euclidean Distance + Document Retrieval

Recall distance metric

$$d(u, v) = \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2}$$

- lacksquare What if each document were lpha times longer?
 - □ Scale word count vectors

.

d= 1

- ☐ What happens to measure of similarity?
- Good to normalize vectors

©Sham Kakade 2017

11

11

Issues with Document Representation

Words counts are bad for standard similarity metrics

- Term Frequency Inverse Document Frequency (tf-idf)
 - ☐ Increase importance of rare words

©Sham Kakade 2017

TF-IDF

Term frequency:

Hoccinences of ted

1-1-1 CI

- \square Could also use $\{0,1\}, 1 + \log f(t,d), \dots$
- Inverse document frequency:

 $idf(t, \mathcal{D}) = \frac{|\chi|}{|+|\{l \in \chi: l \in \mathcal{A}\}|}$

tf-idf:

tfidf $(t,d,D) = \{ \{ \{ \{ \} \} \} \}$

☐ High for document d with high frequency of term t (high "term frequency") and few documents containing term t in the corpus (high "inverse doc frequency")

©Sham Kakade 2017

13

Issues with Search Techniques

Naïve approach:

Brute force search

- \square Given a query point ${\mathscr X}$
- $\hfill\Box$ Scan through each point x^i
- □ O(N) distance computations per 1-NN query!
- □ O(*N*log*k*) per *k*-NN query!

33 Distance Computations

What if N is huge??? (and many queries)

©Sham Kakade 2017

Think about Web Search/Image Search

■ How big is N?

How big is N?

How big is N?

How of mages

How fast do we desire to do recall?

©Sham Kakade 2017

Intuition (?): NN in 1D and Sorting

■ How do we do 1-NN searches in 1 dim?

Pre-processing time:

Query time:

O(1)

©Sham Kakade 2017

KD-Trees

- Smarter approach: kd-trees
 - □ Structured organization of documents
 - Recursively partitions points into axis aligned boxes.
 - ☐ Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.
- kd-trees work "well" in "lowmedium" dimensions
 - ☐ We'll get back to this...

©Sham Kakade 2017

17

KD-Tree Construction

Pt	х	Υ
1	0.00	0.00
2	1.00	4.31
3	0.13	2.85

Start with a list of *d*-dimensional points.

©Sham Kakade 2017

KD-Tree Construction

- Split the points into 2 groups by:
 - \Box Choosing dimension d_i and value V (methods to be discussed...)
 - $\hfill\Box$ Separating the points into $x_{dj}^i \!\!>\! {\rm V}$ and $x_{dj}^i \!\!<\! =\! {\rm V}.$

©Sham Kakade 2017

19

KD-Tree Construction

- Consider each group separately and possibly split again (along same/different dimension).
 - □ Stopping criterion to be discussed...

©Sham Kakade 2017

KD-Tree Construction

- Consider each group separately and possibly split again (along same/different dimension).
 - □ Stopping criterion to be discussed...

©Sham Kakade 2017

21

KD-Tree Construction

- Continue splitting points in each set
 - □ creates a binary tree structure
- Each leaf node contains a list of points

©Sham Kakade 2017

KD-Tree Construction

- Use heuristics to make splitting decisions:
- Which dimension do we split along?
- Which value do we split at?
- When do we stop?

©Sham Kakade 2017

Many heuristics...

©Sham Kakade 2017

25

Nearest Neighbor with KD Trees

 Traverse the tree looking for the nearest neighbor of the query point.

©Sham Kakade 2017

- Examine nearby points first:
 - □ Explore branch of tree closest to the query point first.

©Sham Kakade 2017

27

Nearest Neighbor with KD Trees

- Examine nearby points first:
 - ☐ Explore branch of tree closest to the query point first.

©Sham Kakade 2017

- When we reach a leaf node:
 - □ Compute the distance to each point in the node.

©Sham Kakade 2017

29

Nearest Neighbor with KD Trees

- When we reach a leaf node:
 - □ Compute the distance to each point in the node.

©Sham Kakade 2017

■ Then backtrack and try the other branch at each node visited

©Sham Kakade 2017

31

Nearest Neighbor with KD Trees

Each time a new closest node is found, update the distance bound

©Sham Kakade 2017

- Using the distance bound and bounding box of each node:
 - □ Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

33

Nearest Neighbor with KD Trees

- Using the distance bound and bounding box of each node:
 - ☐ Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

- Using the distance bound and bounding box of each node:
 - □ Prune parts of the tree that could NOT include the nearest neighbor

©Sham Kakade 2017

35

Complexity

- For (nearly) balanced, binary trees...
- Construction
 - ☐ Size:
 - □ Depth:
 - ☐ Median + send points left right:
 - ☐ Construction time:
- 1-NN query
 - ☐ Traverse down tree to starting point:
 - ☐ Maximum backtrack and traverse:
 - □ Complexity range:
- Under some assumptions on distribution of points, we get O(logN) but exponential in d (see citations in reading)

©Sham Kakade 2017

Complexity

©Sham Kakade 2017

37

Complexity for N Queries

- Ask for nearest neighbor to each document
- Brute force 1-NN:
- kd-trees:

©Sham Kakade 2017

Inspections vs. N and d

©Sham Kakade 2017

39

K-NN with KD Trees

- Exactly the same algorithm, but maintain distance as distance to furthest of current *k* nearest neighbors
- Complexity is:

©Sham Kakade 2017

Approximate K-NN with KD Trees

- Before: Prune when distance to bounding box >
- Now: Prune when distance to bounding box >
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance r, then there is no neighbor closer than r/α .
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.

©Sham Kakade 2017

41

Cover trees (+ ball trees)

- What about exact NNs searches in high dimensions?
- Idea: utilize triangle inequality of metric (so allow for arbitrary metric)
- cover-tree guarantees:

©Sham Kakade 2017

Cover trees: what does the triangle inequality imply?

©Sham Kakade 2017

43

Cover trees: data structure

©Sham Kakade 2017

Wrapping Up – Important Points

kd-trees

- Tons of variants
 - □ On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g.,cover trees, ball trees,...)

Nearest Neighbor Search

Distance metric and data representation are crucial to answer returned

For both...

- High dimensional spaces are hard!
 - □ Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... $N >> 2^d$... Typically useless.
 - □ Distances are sensitive to irrelevant features
 - Most dimensions are just noise → Everything equidistant (i.e., everything is far away)
 - Need technique to learn what features are important for your task

What you need to know

- Document retrieval task
 - □ Document representation (bag of words)
 - □ tf-idf
- Nearest neighbor search
 - □ Formulation
 - ☐ Different distance metrics and sensitivity to choice
 - ☐ Challenges with large N
- kd-trees for nearest neighbor search
 - □ Construction of tree
 - NN search algorithm using tree
 - □ Complexity of construction and query
 - ☐ Challenges with large *d*

©Sham Kakade 2017

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials
- In particular, see:
 - □ http://grist.caltech.edu/sc4devo/.../files/sc4devo scalable
 _datamining.ppt

©Sham Kakade 2017