Case Study 2: Document Retrieval

Task Description:
Finding Similar Documents

Document Retrieval

- **Goal:** Retrieve documents of interest
- **Challenges:**
 - Tons of articles out there
 - How should we measure similarity?
Task 1: Find Similar Documents

- **To begin...**
 - **Input:** Query article
 - **Output:** Set of k similar articles

Document Representation

- **Bag of words model**
1-Nearest Neighbor

- **Articles**

- **Query:**

- **1-NN**
 - **Goal:**

 - **Formulation:**

k-Nearest Neighbor

- **Articles**

- **Query:**

- **k-NN**
 - **Goal:**

 - **Formulation:**
Distance Metrics – Euclidean

\[d(u, v) = \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2} \]

Or, more generally,

\[d(u, v) = \sqrt{\sum_{i=1}^{d} \sigma_i^2 (u_i - v_i)^2} \]

Equivalently,

\[d(u, v) = \sqrt{(u - v)' \Sigma (u - v)} \]

where

\[\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_d^2 \end{bmatrix} \]

Other Metrics...

- Mahalanobis, Rank-based, Correlation-based, cosine similarity...

Notable Distance Metrics
(and their level sets)

- Scaled Euclidean (\(L_2 \))
- Mahalanobis
 \((\Sigma \text{ is general sym pos def matrix, on previous slide = diagonal}) \)

\(L_2 \) norm (absolute)

\(L_\infty \) (\(max \) norm)
Euclidean Distance + Document Retrieval

- Recall distance metric
 \[d(u, v) = \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2} \]

- What if each document were \(\alpha \) times longer?
 - Scale word count vectors
 - What happens to measure of similarity?

- Good to normalize vectors

Issues with Document Representation

- Words counts are *bad* for standard similarity metrics

- Term Frequency – Inverse Document Frequency (tf-idf)
 - Increase importance of rare words
TF-IDF

- Term frequency:
 \[tf(t, d) = \]
 - Could also use \{0, 1\}, \(1 + \log f(t, d)\), . . .
- Inverse document frequency:
 \[idf(t, D) = \]

- tf-idf:
 \[tfidf(t, d, D) = \]
 - High for document \(d\) with high frequency of term \(t\) (high "term frequency") and few documents containing term \(t\) in the corpus (high "inverse doc frequency")

Issues with Search Techniques

- Naïve approach:
 Brute force search
 - Given a query point \(x\)
 - Scan through each point \(x^i\)
 - \(O(N)\) distance computations per 1-NN query!
 - \(O(N\log k)\) per \(k\)-NN query!

- What if \(N\) is huge???
 (and many queries)
Think about Web Search/Image Search

- How big is N?
- How fast do we desire to do recall?

Intuition (?): NN in 1D and Sorting

- How do we do 1-NN searches in 1 dim?
- Pre-processing time:
- Query time:
KD-Trees

- Smarter approach: **kd-trees**
 - Structured organization of documents
 - Recursively partitions points into axis aligned boxes.
 - Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.

- **kd-trees** work “well” in “low-medium” dimensions
 - We’ll get back to this...

KD-Tree Construction

- Start with a list of d-dimensional points.
KD-Tree Construction

- Split the points into 2 groups by:
 - Choosing dimension d_j and value V (methods to be discussed...)
 - Separating the points into $x_{d_j}^i > V$ and $x_{d_j}^i \leq V$.

- Consider each group separately and possibly split again (along same/different dimension).
 - Stopping criterion to be discussed...
Consider each group separately and possibly split again (along same/different dimension).
- Stopping criterion to be discussed...

- Continue splitting points in each set
 - creates a binary tree structure
 - Each leaf node contains a list of points
Keep one additional piece of information at each node:
- The (tight) bounds of the points at or below this node.

Use heuristics to make splitting decisions:
- Which dimension do we split along?
- Which value do we split at?
- When do we stop?
Many heuristics...

median heuristic

center-of-range heuristic

Nearest Neighbor with KD Trees

- Traverse the tree looking for the nearest neighbor of the query point.
Examine nearby points first:
- Explore branch of tree closest to the query point first.
When we reach a leaf node:
- Compute the distance to each point in the node.
Nearest Neighbor with KD Trees

- Then backtrack and try the other branch at each node visited

Nearest Neighbor with KD Trees

- Each time a new closest node is found, update the distance bound
Nearest Neighbor with KD Trees

- Using the distance bound and bounding box of each node:
 - Prune parts of the tree that could NOT include the nearest neighbor
Nearest Neighbor with KD Trees

- Using the distance bound and bounding box of each node:
 - Prune parts of the tree that could NOT include the nearest neighbor

Complexity

- For (nearly) balanced, binary trees...
- Construction
 - Size:
 - Depth:
 - Median + send points left right:
 - Construction time:
- 1-NN query
 - Traverse down tree to starting point:
 - Maximum backtrack and traverse:
 - Complexity range:

- Under some assumptions on distribution of points, we get $O(\log N)$ but exponential in d (see citations in reading)
Complexity

Complexity for N Queries

- Ask for nearest neighbor to each document
- Brute force 1-NN:
- kd-trees:
Inspections vs. N and d

- Exactly the same algorithm, but maintain distance as distance to furthest of current k nearest neighbors
- Complexity is:
Approximate K-NN with KD Trees

- **Before:** Prune when distance to bounding box >
- **Now:** Prune when distance to bounding box >
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance r, then there is no neighbor closer than r/α.
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.

Cover trees (+ ball trees)

- What about exact NNs searches in high dimensions?
- Idea: utilize triangle inequality of metric (so allow for arbitrary metric)
- cover-tree guarantees:
Cover trees: what does the triangle inequality imply?

Cover trees: data structure
Wrapping Up – Important Points

kd-trees
- Tons of variants
 - On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g., cover trees, ball trees,...)

Nearest Neighbor Search
- Distance metric and data representation are crucial to answer returned

For both...
- High dimensional spaces are hard!
 - Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... $N \gg 2^d$... Typically useless.
 - Distances are sensitive to irrelevant features
 - Most dimensions are just noise \rightarrow Everything equidistant (i.e., everything is far away)
 - Need technique to learn what features are important for your task

What you need to know

- **Document retrieval task**
 - Document representation (bag of words)
 - tf-idf
- **Nearest neighbor search**
 - Formulation
 - Different distance metrics and sensitivity to choice
 - Challenges with large N
- **kd-trees for nearest neighbor search**
 - Construction of tree
 - NN search algorithm using tree
 - Complexity of construction and query
 - Challenges with large d
Acknowledgment

- This lecture contains some material from Andrew Moore’s excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials

- In particular, see:
 - http://grist.caltech.edu/sc4devo/.../files/sc4devo_scalable_datamining.ppt