Case Study 2: Document Retrieval

Task Description:
Finding Similar Items

Announcements:

• HW2 posted
• Project Milestones
 – Start early
 – Lit. review (>= 3 papers read carefully)
 – First rounds of experiments

• Today:
 – Review: Sim search, k-NNs, KD-trees
 – Today: KD-trees (cont.), ball trees, cover trees
Task 1: Find Similar Documents

- To begin...
 - **Input**: Query article
 - **Output**: Set of k similar articles

Document Representation

- Bag of words model

$$X = \begin{bmatrix} w_{c_1} \\ \vdots \\ w_{c_d} \end{bmatrix} \in \mathbb{R}^d$$

Bag of words model:
- Ignore word order.

© Sham Kakade 2017
Where is FAST similarity search important?

- Image search
- Image search
- Sky maps identification
- Species/ song identification
- Physics simulators
- Robotics
1-Nearest Neighbor

- Articles
 \[\mathcal{X} = \{X^1, \ldots, X^n\} \]

- Query:
 \[\cdot \]

- 1-NN
 - Goal:
 \[\text{find } \mathbf{x} \in \mathcal{X} \text{ closest to } \mathbf{x} \text{ query} \]
 - Formulation:
 \[\mathbf{x}_{NN} \in \mathbf{x} \in \mathcal{X} \setminus \mathbf{x} \]

Issues with Search Techniques

- Naïve approach:
 - **Brute force search**
 - Given a query point \(\mathbf{x} \)
 - Scan through each point \(\mathbf{x}^i \)
 - \(O(N) \) distance computations per 1-NN query!
 - \(O(N\log k) \) per \(k \)-NN query!

- What if \(N \) is huge???
 (and many queries)
Think about Web Search/Image Search

- How big is N?
- How fast do we desire to do recall?

Intuition (?): $\text{NN in 1D and Sorting}$

- How do we do 1-NN searches in 1 dim?
- Pre-processing time:
 \[O(N) \]
 \[O(N \log N) \]
- Query time:
 \[O(1) \]
 \[O(\log N) \]
KD-Trees

- Smarter approach: *kd-trees*
 - Structured organization of documents
 - Recursively partitions points into axis-aligned boxes.
 - Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.

- *kd-trees* work “well” in “low-medium” dimensions
 - We’ll get back to this...

KD-Tree Construction

- Start with a list of d-dimensional points.
Split the points into 2 groups by:
- Choosing dimension d_j and value V (methods to be discussed...)
- Separating the points into $x_{d_j} > V$ and $x_{d_j} \leq V$.

Consider each group separately and possibly split again (along same/different dimension).
- Stopping criterion to be discussed...
Consider each group separately and possibly split again (along same/different dimension).

- Stopping criterion to be discussed...

- Continue splitting points in each set
 - creates a binary tree structure
 - Each leaf node contains a list of points
KD-Tree Construction

- Keep one additional piece of information at each node:
 - The (tight) bounds of the points at or below this node.

KD-Tree Construction

- Use heuristics to make splitting decisions:
 - Which dimension do we split along?
 - widest \((\text{some variance measure})\)
 - Which value do we split at?
 - median of content of range
 - When do we stop?
 - Stop when each box has \(s \leq m\) points.
Many heuristics...

- Median heuristic
- Center-of-range heuristic

Nearest Neighbor with KD Trees

- Traverse the tree looking for the nearest neighbor of the query point.
Examinate nearby points first:
- Explore branch of tree closest to the query point first.
When we reach a leaf node:
- Compute the distance to each point in the node.
Nearest Neighbor with KD Trees

- Then backtrack and try the other branch at each node visited

- Each time a new closest node is found, update the distance bound
Using the distance bound and bounding box of each node:
- Prune parts of the tree that could NOT include the nearest neighbor
Nearest Neighbor with KD Trees

- Using the distance bound and bounding box of each node:
 - Prune parts of the tree that could NOT include the nearest neighbor

Complexity

- For (nearly) balanced, binary trees...
 - Construction
 - Size: \(O(N) \)
 - Depth: \(O(\log N) \) (if can balance)
 - Median + send points left right:
 - Construction time: \(O(N \log N) \)
 - 1-NN query
 - Traverse down to starting point:
 - Maximum backtrack and traverse:
 - Complexity range: \(O(N \log N) \) to \(O(N) \)

- Under some assumptions on distribution of points, we get \(O(\log N) \) but exponential in \(d \) (see citations in reading)
Complexity for N Queries

- Ask for nearest neighbor to each document

- Brute force 1-NN:
 \[O(N^2) \]

- kd-trees:
 \[O(N^2) \Rightarrow O(N \log N) \]
Inspections vs. N and d

K-NN with KD Trees

- Exactly the same algorithm, but maintain distance as distance to furthest of current k nearest neighbors
- Complexity is: $O(k \log N)$
Approximate K-NN with KD Trees

- **Before**: Prune when distance to bounding box > \(r \)
- **Now**: Prune when distance to bounding box > \(r/\alpha \)
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance \(r \), then there is no neighbor closer than \(r/\alpha \).
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.

What about NNs searches in high dimensions?

- **KD-trees**:
 - What is going wrong?
 - Can this be easily fixed?

- What do have to utilize?
 - Utilize triangle inequality of *metric*
 - New ideas: ball trees and cover trees
Ball Trees

Ball Tree Construction

- **Node:**
 - Every node defines a ball (hypersphere), containing
 - a subset of the points (to be searched)
 - A center
 - A (tight) radius of the points

- **Construction:**
 - Root: start with a ball which contains all the data
 - take a ball and make two children (nodes) as follows:
 - Make two spheres, assign each point (in the parent sphere) to its closer sphere
 - Make the two spheres in a “reasonable” manner
Ball Tree Search

- Given point x, how do find its nearest neighbor quickly?

- Approach:
 - Start: follow a greedy path through the tree
 - Backtrack and prune: rule out other paths based on the triangle inequality
 - (just like in KD-trees)

- How good is it?
 - Guarantees:
 - Practice:

Cover trees

- What about exact NNs in general metric spaces?

- Same Idea: utilize triangle inequality of metric (so allow for arbitrary metric)

- What does the dimension even mean?

- cover-tree idea: exploit the structure in the data
Intrinsic Dimension

- How does the volume grow, from radius R to $2R$?
 \[
 \frac{\text{Vol}(B_{2R})}{\text{Vol}(B_R)} = 2^d
 \]

- Can we relax this idea to get at the “intrinsic” dimension?

 □ This is the “doubling” dimension:

Cover trees: data structure

- Ball Trees: each node had associated
 □ Center:
 □ (tight) Radius:
 □ Points:

- Cover trees:
 □ Center:
 □ (tight) Radius:
 □ Points:
Cover Tree Complexity

- Construction
 - Size:
 - Construction time:
- 1-NN query
 - Traverse down tree to starting point:
 - Maximum backtrack and traverse:
- Under assumptions that doubling dimension is D.

Wrapping Up – Important Points

kd-trees
- Tons of variants
 - On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g., cover trees, ball trees,...)

Nearest Neighbor Search
- Distance metric and data representation are crucial to answer returned

For both...
- High dimensional spaces are hard!
 - Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... $N \gg 2^d$... Typically useless.
 - Distances are sensitive to irrelevant features
 - Most dimensions are just noise \Rightarrow Everything equidistant (i.e., everything is far away)
 - Need technique to learn what features are important for your task
What you need to know

- **Document retrieval task**
 - Document representation (bag of words)
 - tf-idf

- **Nearest neighbor search**
 - Formulation
 - Different distance metrics and sensitivity to choice
 - Challenges with large N

- **kd-trees for nearest neighbor search**
 - Construction of tree
 - NN search algorithm using tree
 - Complexity of construction and query
 - Challenges with large d