Case Study 2: Document Retrieval

Task Description:
Finding Similar Items

Announcements:

• HW2 posted
• Project Milestones
 – Start early
 – Lit. review (>= 3 papers read carefully)
 – First rounds of experiments

• Today:
 – Review: Sim search, k-NNs, KD-trees
 – Today: KD-trees (cont.), ball trees, cover trees
Task 1: Find Similar Documents

- To begin...
 - **Input:** Query article
 - **Output:** Set of k similar articles

Document Representation

- Bag of words model

\[X = \begin{bmatrix} wc_1 \\ \vdots \\ wc_d \end{bmatrix} \in \mathbb{R}^d \]

"Bag of words": count of words; ignore word order.
Image Search...

1-Nearest Neighbor

- Articles
- Query:
- 1-NN
 - Goal:
 \[\text{find } x \in \mathbb{R}^d \text{ "closest" to } x. \]
 - Formulation:
 \[x_{\text{NN}} = \arg\min_{x' \in \mathbb{R}^d} d(x', x) \]
Issues with Search Techniques

- Naïve approach:
 - **Brute force search**
 - Given a query point x'
 - Scan through each point x^i
 - $O(N)$ distance computations per 1-NN query!
 - $O(N \log k)$ per k-NN query!

- What if N is huge???
 (and many queries)

Think about Web Search/Image Search

- How big is N?

- How fast do we desire to do recall?
Intuition (?): NN in 1D and Sorting

- How do we do 1-NN searches in 1 dim?

 - How do we sort?

 - Pre-processing time:
 \[O(n) \]
 - Query time:
 \[O(1) \]

Pre-processing time:

- Query time:

KD-Trees

- Smarter approach: \textit{kd-trees}
 - Structured organization of documents
 - Recursively partitions points into axis aligned boxes.
 - Enables more efficient pruning of search space
 - Examine nearby points first.
 - Ignore any points that are further than the nearest point found so far.

\textit{kd-trees} work “well” in “low-medium” dimensions

- We’ll get back to this…
- Start with a list of d-dimensional points.

Split the points into 2 groups by:
- Choosing dimension d_j and value V (methods to be discussed...)
- Separating the points into $x_{d_j} > V$ and $x_{d_j} \leq V$.

<table>
<thead>
<tr>
<th>Pt</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>4.31</td>
</tr>
<tr>
<td>3</td>
<td>0.13</td>
<td>2.85</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Consider each group separately and possibly split again (along same/different dimension).

- Stopping criterion to be discussed...
KD-Tree Construction

- Continue splitting points in each set
 - creates a binary tree structure
- Each leaf node contains a list of points

KD-Tree Construction

- Keep one additional piece of information at each node:
 - The (tight) bounds of the points at or below this node.
KD-Tree Construction

- Use heuristics to make splitting decisions:
 - Which dimension do we split along?
 - Which value do we split at?
 - When do we stop?

Many heuristics...

- median heuristic
- center-of-range heuristic
Traverse the tree looking for the nearest neighbor of the query point.

- Examine nearby points first:
 - Explore branch of tree closest to the query point first.
Examine nearby points first:
- Explore branch of tree closest to the query point first.

When we reach a leaf node:
- Compute the distance to each point in the node.
When we reach a leaf node:
- Compute the distance to each point in the node.

Then backtrack and try the other branch at each node visited.
Each time a new closest node is found, update the distance bound.

Using the distance bound and bounding box of each node:
- Prune parts of the tree that could NOT include the nearest neighbor.
Using the distance bound and bounding box of each node:

- Prune parts of the tree that could NOT include the nearest neighbor
Complexity

- For (nearly) balanced, binary trees...
- Construction
 - Size:
 - Depth:
 - Median + send points left right:
 - Construction time:
- 1-NN query
 - Traverse down tree to starting point:
 - Maximum backtrack and traverse:
 - Complexity range:

Under some assumptions on distribution of points, we get $O(\log N)$ but exponential in d (see citations in reading)
Complexity for N Queries

- Ask for nearest neighbor to each document
- Brute force 1-NN:
- kd-trees:

Inspections vs. N and d
K-NN with KD Trees

- Exactly the same algorithm, but maintain distance as distance to furthest of current k nearest neighbors
- Complexity is:

Approximate K-NN with KD Trees

- **Before**: Prune when distance to bounding box >
- **Now**: Prune when distance to bounding box >
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance r, then there is no neighbor closer than r/α.
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.
What about NNs searches in high dimensions?

- KD-trees:
 - What is going wrong?
 - Can this be easily fixed?

- What do have to utilize?
 - Utilize triangle inequality of metric
 - New ideas: ball trees and cover trees

Ball Trees

Ball-tree Example

(level 1) (level 2)

(level 3) (level 4)
Ball Tree Construction

- **Node:**
 - Every node defines a ball (hypersphere), containing
 - a subset of the points (to be searched)
 - A center
 - A (tight) radius of the points

- **Construction:**
 - Root: start with a ball which contains all the data
 - Take a ball and make two children (nodes) as follows:
 - Make two spheres, assign each point (in the parent sphere) to its closer sphere
 - Try to make the two spheres in a “reasonable” manner

Ball Tree Search

- Given point \(x \), how do find its nearest neighbor quickly?
- **Approach:**
 - Start: follow a greedy path through the tree
 - Backtrack and prune: rule out other paths based on the triangle inequality
 - (just like in KD-trees)
- **How good is it?**
 - **Guarantees:**
 - **Practice:**
Cover trees (+ ball trees)

- What about exact NNs searches in high dimensions?
- Idea: utilize triangle inequality of metric (so allow for arbitrary metric)
- cover-tree guarantees:

Cover trees: what does the triangle inequality imply?
Cover trees: data structure

Wrapping Up – Important Points

kd-trees
- Tons of variants
 - On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g., cover trees, ball trees,...)

Nearest Neighbor Search
- Distance metric and data representation are crucial to answer returned

For both...
- High dimensional spaces are hard!
 - Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... $N \gg 2^d$... Typically useless.
 - Distances are sensitive to irrelevant features
 - Most dimensions are just noise \Rightarrow Everything equidistant (i.e., everything is far away)
 - Need technique to learn what features are important for your task
What you need to know

- Document retrieval task
 - Document representation (bag of words)
 - tf-idf
- Nearest neighbor search
 - Formulation
 - Different distance metrics and sensitivity to choice
 - Challenges with large N
- kd-trees for nearest neighbor search
 - Construction of tree
 - NN search algorithm using tree
 - Complexity of construction and query
 - Challenges with large d