Case Study 1: Estimating Click Probabilities

Tackling an Unknown Number of Features with Sketching

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Sham Kakade
April 4th, 2017

What you should know about Logistic Regression (LR) and Click Prediction

• Click prediction problem:
 – Estimate probability of clicking
 – Can be modeled as logistic regression
• Logistic regression model: Linear model
• Gradient ascent to optimize conditional likelihood
• Overfitting + regularization
• Regularized optimization
 – Convergence rates and stopping criterion
• Stochastic gradient ascent for large/streaming data
 – Convergence rates of SGD
• AdaGrad motivation, derivation, and algorithm

©Sham Kakade 2017
Problem 1: Complexity of LR Updates

- Logistic regression update:
 \[w_{i}^{(t+1)} \leftarrow w_{i}^{(t)} + \eta_{t} \left\{ -\lambda w_{i}^{(t)} + x_{i}^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right\} \]

- Complexity of updates:
 - Constant in number of data points
 - In number of features?
 - Problem both in terms of computational complexity and sample complexity

- What can we with very high dimensional feature spaces?
 - Kernels not always appropriate, or scalable
 - What else?

Problem 2: Unknown Number of Features

- For example, bag-of-words features for text data:
 - “Mary had a little lamb, little lamb…”

- What’s the dimensionality of \(x \)?
- What if we see new word that was not in our vocabulary?
 - Obamacare
 - Theoretically, just keep going in your learning, and initialize \(w_{\text{ObamaCare}} = 0 \)
 - In practice, need to re-allocate memory, fix indices,… A big problem for Big Data
What Next?

- Hashing & Sketching!
 - Addresses both dimensionality issues and new features in one approach!

- Let’s start with a much simpler problem: Is a string in our vocabulary?
 - Membership query

- How do we keep track?
 - Explicit list of strings
 - Very slow
 - Fancy Trees and Tries
 - Hard to implement and maintain
 - Hash tables?

Hash Functions and Hash Tables

- Hash functions map keys to integers (bins):
 - Keys can be integers, strings, objects,…

- Simple example: mod
 - \(h(i) = (a \cdot i + b) \mod m \)
 - \(a = 7 \), \(b = 0 \), \(m = 32 \)
 - \(i = 4 \)
 - \(h(i) = 3 \cdot 4 \mod 32 = 7 \)
 - Random choice of \((a,b) \) (usually primes)
 - If inputs are uniform, bins are uniformly used
 - From two results can recover \((a,b) \), so not pairwise independent -> Typically use fancier hash functions

- Hash table:
 - Store list of objects in each bin
 - Exact, but storage still linear in size of object ids, which can be very long
 * E.g., hashing very long strings, entire documents
Hash Bit-Vector Table-Based Membership Query

- Approximate queries with one-sided error: Accept false positives only
 - If we say no, element is not in set
 - If we say yes, element is very to be likely in set
- Given hash function, keep binary bit vector \(v \) of length \(m \):
 \[
 v = [1, 1, 1, 0, 1, 1, 0, 1]
 \]
- Query \(Q(i) \): Element \(i \) in set?
 - \(\bigwedge_{j=1}^{m} h_j(i) = 0 \) \(\Rightarrow Q(i) = 0 \)
 - \(\bigwedge_{j=1}^{m} h_j(i) = 1 \) \(\Rightarrow Q(i) \) \(\rightarrow \text{Yes} \)
- Collisions:
 - Guarantee: One-sided errors, but may make many mistakes
 - How can we improve probability of correct answer?

Bloom Filter: Multiple Hash Tables

- Single hash table \(\rightarrow \) Many false positives
- Multiple hash tables with independent hash functions
 - Apply \(h_1(i), \ldots, h_p(i) \), set all bits to 1
 \[
 v_1 = [1, 1, 1, 0, 1, 1, 0, 1]
 \]
 \[
 v_p = [1, 1, 1, 0, 1, 1, 0, 1]
 \]
- Query \(Q(i) \)?
 - If \(\forall_j, v_j(h_j(i)) = 1 \) \(\Rightarrow \text{Yes} \)
 - Else \(\text{no!} \)
- Significantly decrease probability of false positives
Analysis of Bloom Filter

• Want to keep track of \(n \) elements with false positive probability of \(\delta > 0 \)... how large \(m \) & \(p \)?

• Simple analysis yields:

 \[
 m = \frac{n \log_2 \frac{1}{\delta}}{\ln 2} \approx 1.5n \log_2 \frac{1}{\delta} \\
 p = \log_2 \frac{1}{\delta}
 \]

\[
\Rightarrow \text{prob} (\text{false positive}) \leq \delta
\]

Sketching Counts

• Bloom Filter is super cool, but not what we need...

 – We don’t just care about whether a feature existed before, but to keep track of counts of occurrences of features! (assuming \(x_i \) integer)

• Recall the LR update:

\[
w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right\}
\]

• Must keep track of (weighted) counts of each feature:

 – E.g., with sparse data, for each non-zero dimension \(i \) in \(x^{(t)} \):

• Can we generalize the Bloom Filter?
Count-Min Sketch: single vector

- Simpler problem: Count how many times you see each string
- Single hash function:
 - Keep $Count$ vector of length m
 - every time see string i:
 \[
 Count[h(i)] \leftarrow Count[h(i)] + 1
 \]
 - Again, collisions could be a problem:
 - a_i is the count of element i:

Count-Min Sketch: general case

- Keep p by m Count matrix

- p hash functions:
 - Just like in Bloom Filter, decrease errors with multiple hashes
 - Every time see string i:
 \[
 \forall j \in \{1, \ldots, p\} : Count[j, h_j(i)] \leftarrow Count[j, h_j(i)] + 1
 \]
Querying the Count-Min Sketch

\[\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1 \]

- Query Q(i)?
 - What is in Count[j,k]?
 - Thus:
 - Return:

Analysis of Count-Min Sketch

\[\hat{a}_i = \min_j \text{Count}[j, h(i)] \geq a_i \]

- Set:
 \[m = \left\lceil \frac{\epsilon}{\epsilon} \right\rceil \quad p = \left\lceil \ln \frac{1}{\delta} \right\rceil \]

- Then, after seeing n elements:
 \[\hat{a}_i \leq a_i + \epsilon n \]
- With probability at least 1-\delta
Proof of Count-Min for Point Query with Positive Counts: Part 1 – Expected Bound

- $l_{i,j,k}$ = indicator that i & k collide on hash j:

- Bounding expected value:

- $X_{i,j} =$ total colliding mass on estimate of count of i in hash j:

- Bounding colliding mass:

- Thus, estimate from each hash function is close in expectation

Proof of Count-Min for Point Query with Positive Counts: Part 2 – High Probability Bounds

- What we know: $\text{Count}[j, h_j(i)] = a_i + X_{i,j}$
 $E[X_{i,j}] \leq \frac{\epsilon}{\epsilon n}$

- Markov inequality: For $z_1, ..., z_k$ positive iid random variables

 $P(\forall z_i : z_i > \alpha E[z_i]) < \alpha^{-k}$

- Applying to the Count-Min sketch:
But updates may be positive or negative

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|\mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\} \]

- Count-Min sketch for positive & negative case
 - \(a \), no longer necessarily positive
- Update the same: Observe change \(\Delta_i \) to element \(i \):
 \[\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + \Delta_i \]
 - Each \(\text{Count}[j, h(j)] \) no longer an upper bound on \(a_i \)
- How do we make a prediction?

- Bound: \(|\hat{a}_i - a_i| \leq 3\epsilon |a|_1 \)
 - With probability at least \(1-\delta^{1/\epsilon} \), where \(|a|_1 = \sum_i |a_i| \)

Finally, Sketching for LR

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|\mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\} \]

- Never need to know size of vocabulary!
- At every iteration, update Count-Min matrix:

- Making a prediction:

- Scales to huge problems, great practical implications...
Hash Kernels

- Count-Min sketch not designed for negative updates
- Biased estimates of dot products

- **Hash Kernels**: Very simple, but powerful idea to remove bias
- Pick 2 hash functions:
 - h: Just like in Count-Min hashing
 - ξ: Sign hash function
 * Removes the bias found in Count-Min hashing (see homework)
- Define a “kernel”, a projection ϕ for x:

Hash Kernels Preserve Dot Products

$$\phi_i(x) = \sum_{j:h(j) = i} \xi(j)x_j$$

- Hash kernels provide unbiased estimate of dot-products!

- Variance decreases as $O(1/m)$

- Choosing m? For $\varepsilon > 0$, if
 $$m = O\left(\frac{\log N}{\varepsilon^2}\right)$$
 - Under certain conditions...
 - Then, with probability at least 1-\(\delta\):
 $$(1 - \varepsilon)||x - x'||^2 \leq ||\phi(x) - \phi(x')||^2_2 \leq (1 + \varepsilon)||x - x'||^2_2$$
Learning With Hash Kernels

• Given hash kernel of dimension \(m \), specified by \(h \) and \(\xi \)

 \(- \) Learn \(m \) dimensional weight vector

• Observe data point \(x \)

 \(- \) Dimension does not need to be specified a priori!

• Compute \(\phi(x) \):

 \(- \) Initialize \(\phi(x) \)

 \(- \) For non-zero entries \(j \) of \(x \):

• Use normal update as if observation were \(\phi(x) \), e.g., for LR using SGD:

\[
 w_i(t+1) \leftarrow w_i(t) + \eta_t \left\{ -\lambda w_i(t) + \phi_i(x(t)) [y(t) - P(Y = 1 | \phi(x(t)), w(t))] \right\}
\]

Interesting Application of Hash Kernels: Multi-Task Learning

• Personalized click estimation for many users:

 \(- \) One global click prediction vector \(w \):

 \(- \) But...

 \(- \) A click prediction vector \(w_u \) per user \(u \):

 \(- \) But...

• Multi-task learning: Simultaneously solve multiple learning related problems:

 \(- \) Use information from one learning problem to inform the others

• In our simple example, learn both a global \(w \) and one \(w_u \) per user:

 \(- \) Prediction for user \(u \):

 \(- \) If we know little about user \(u \):

 \(- \) After a lot of data from user \(u \):
Problems with Simple Multi-Task Learning

- Dealing with new user is annoying, just like dealing with new words in vocabulary

- Dimensionality of joint parameter space is HUGE, e.g. personalized email spam classification from Weinberger et al.:
 - 3.2M emails
 - 40M unique tokens in vocabulary
 - 430K users
 - 16T parameters needed for personalized classification!

Hash Kernels for Multi-Task Learning

- Simple, pretty solution with hash kernels:
 - Very multi-task learning as (sparse) learning problem with (huge) joint data point z for point x and user u:

- Estimating click probability as desired:

- Address huge dimensionality, new words, and new users using hash kernels:
Simple Trick for Forming Projection $\phi(x,u)$

- Observe data point x for user u
 - Dimension does not need to be specified a priori and user can be new!

- Compute $\phi(x,u)$:
 - Initialize $\phi(x,u)$
 - For non-zero entries j of x:
 - E.g., j='Obamacare'
 - Need two contributions to ϕ:
 - Global contribution
 - Personalized Contribution
 - Simply:

- Learn as usual using $\phi(x,u)$ instead of $\phi(x)$ in update function

Results from Weinberger et al. on Spam Classification: Effect of m

Figure 2. The decrease of uncaught spam over the baseline classifier averaged over all users. The classification threshold was chosen to keep the not-spam misclassification fixed at 1%. The hashed global classifier (global-hashed) converges relatively soon, showing that the distortion error ϵ_d vanishes. The personalized classifier results in an average improvement of up to 30%.

©Sham Kakade 2017
Results from Weinberger et al. on Spam Classification: Multi-Task Effect

Figure 3. Results for users clustered by training emails. For example, the bucket [8, 15] consists of all users with eight to fifteen training emails. Although users in buckets with large amounts of training data do benefit more from the personalized classifier (up to 65% reduction in spam), even users that did not contribute to the training corpus at all obtain almost 20% spam-reduction.

What you need to know

- Hash functions
- Bloom filter
 - Test membership with some false positives, but very small number of bits per element
- Count-Min sketch
 - Positive counts: upper bound with nice rates of convergence
 - General case
- Application to logistic regression
- Hash kernels:
 - Sparse representation for feature vectors
 - Very simple, use two hash function (Can use one hash function...take least significant bit to define i)
 - Quickly generate projection φ(x)
 - Learn in projected space
- Multi-task learning:
 - Solve many related learning problems simultaneously
 - Very easy to implement with hash kernels
 - Significantly improve accuracy in some problems (if there is enough data from individual users)