Case Study 1: Estimating Click Probabilities

Tackling an Unknown Number of Features with Sketching

What you should know about Logistic Regression (LR) and Click Prediction

- Click prediction problem:
 - Estimate probability of clicking
 - Can be modeled as logistic regression
- Logistic regression model: Linear model
- Gradient ascent to optimize conditional likelihood
- Overfitting + regularization
- Regularized optimization
 - Convergence rates and stopping criterion
- Stochastic gradient ascent for large/streaming data
 - Convergence rates of SGD
- AdaGrad motivation, derivation, and algorithm
Problem 1: Complexity of LR Updates

- Logistic regression update:
 \[
 w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{-\lambda w_i^{(t)} + x_i^{(t)} y_i^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})\right\}
 \]

- Complexity of updates:
 - Constant in number of data points
 - In number of features?
 - Problem both in terms of computational complexity and sample complexity

- What can we with very high dimensional feature spaces?
 - Kernels not always appropriate, or scalable
 - What else?

Problem 2: Unknown Number of Features

- For example, bag-of-words features for text data:
 - “Mary had a little lamb, little lamb…”

- What’s the dimensionality of \(x\)?
- What if we see new word that was not in our vocabulary?
 - Obamacare
 - Theoretically, just keep going in your learning, and initialize \(w_{Obamacare} = 0\)
 - In practice, need to re-allocate memory, fix indices,… A big problem for Big Data

©Sham Kakade 2017
What Next?

- Hashing & Sketching!
 - Addresses both dimensionality issues and new features in one approach!

- Let’s start with a much simpler problem: Is a string in our vocabulary?
 - Membership query

- How do we keep track?
 - Explicit list of strings
 - Very slow
 - Fancy Trees and Tries
 - Hard to implement and maintain

 - Hash tables?

Hash Functions and Hash Tables

- Hash functions map keys to integers (bins):
 - Keys can be integers, strings, objects,...

- Simple example: mod
 - \(h(i) = (a \cdot i + b) \% m \)

 - Random choice of \((a,b)\) (usually primes)
 - If inputs are uniform, bins are uniformly used
 - From two results can recover \((a,b)\), so not pairwise independent \(\rightarrow\) Typically use fancier hash functions

- Hash table:
 - Store list of objects in each bin
 - Exact, but storage still linear in size of object ids, which can be very long
 - E.g., hashing very long strings, entire documents
Hash Bit-Vector Table-Based Membership Query

- Approximate queries with one-sided error: Accept false positives only
 - If we say no, element is not in set
 - If we say yes, element is very to be likely in set

- Given hash function, keep binary bit vector v of length m:

- Query $Q(i)$: Element i in set?
 -
 -

- Collisions:

- Guarantee: One-sided errors, but may make many mistakes
 - How can we improve probability of correct answer?

Bloom Filter: Multiple Hash Tables

- Single hash table \rightarrow Many false positives

- Multiple hash tables with independent hash functions
 - Apply $h_1(i), ..., h_d(i)$, set all bits to 1

- Query $Q(i)$?

- Significantly decrease probability of false positives
Analysis of Bloom Filter

• Want to keep track of n elements with false positive probability of $\delta > 0$... how large m & p?

• Simple analysis yields:
 $$m = \frac{n \log_2 \frac{1}{\delta}}{\ln 2} \approx 1.5n \log_2 \frac{1}{\delta}$$
 $$p = \log_2 \frac{1}{\delta}$$

Sketching Counts

• Bloom Filter is super cool, but not what we need...
 – We don’t just care about whether a feature existed before, but to keep track of counts of occurrences of features! (assuming x_i integer)

• Recall the LR update:
 $$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right\}$$

• Must keep track of (weighted) counts of each feature:
 – E.g., with sparse data, for each non-zero dimension i in $x^{(t)}$:

• Can we generalize the Bloom Filter?

©Sham Kakade 2017
Count-Min Sketch: single vector

- Simpler problem: Count how many times you see each string
- Single hash function:
 - Keep Count vector of length m
 - every time see string i:
 $$\text{Count}[h(i)] \leftarrow \text{Count}[h(i)] + 1$$

- Again, collisions could be a problem:
 - a_i is the count of element i:

Count-Min Sketch: general case

- Keep p by m Count matrix

- p hash functions:
 - Just like in Bloom Filter, decrease errors with multiple hashes
 - Every time see string i:
 $$\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1$$
Querying the Count-Min Sketch

\[\forall j \in \{1, \ldots, p\} : Count[j, h_j(i)] \leftarrow Count[j, h_j(i)] + 1 \]

- Query \(Q(i) \)?
 - What is in \(Count[j,k] \)?

- Thus:

- Return:

Analysis of Count-Min Sketch

\[\hat{a}_i = \min_j Count[j, h(i)] \geq a_i \]

- Set:
 \[m = \left\lceil \frac{e}{\epsilon} \right\rceil \quad p = \left\lceil \ln \frac{1}{\delta} \right\rceil \]

- Then, after seeing \(n \) elements:
 \[\hat{a}_i \leq a_i + \epsilon n \]

- With probability at least \(1-\delta \)
Proof of Count-Min for Point Query with Positive Counts: Part 1 – Expected Bound

• \(I_{i,k} \) = indicator that \(i \) & \(k \) collide on hash \(j \):

• Bounding expected value:

• \(X_{i,j} \) = total colliding mass on estimate of count of \(i \) in hash \(j \):

• Bounding colliding mass:

• Thus, estimate from each hash function is close in expectation

Proof of Count-Min for Point Query with Positive Counts: Part 2 – High Probability Bounds

• What we know: \(\text{Count}[j, h_j(i)] = a_i + X_{i,j} \quad E[X_{i,j}] \leq \frac{e}{e}n \)

• Markov inequality: For \(z_1, \ldots, z_k \) positive iid random variables

\[P(\forall z_i : z_i > \alpha E[z_i]) < \alpha^{-k} \]

• Applying to the Count-Min sketch:
But updates may be positive or negative

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + x_i^{(t)} y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)}) \right\} \]

- Count-Min sketch for positive & negative case
 - \(\hat{a}, a \), no longer necessarily positive
- Update the same: Observe change \(\Delta_i \) to element \(i \):
 \(\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + \Delta_i \)
 - Each \(\text{Count}[j,h(i)] \) no longer an upper bound on \(a_i \)
- How do we make a prediction?

- Bound: \(|\hat{a}_i - a_i| \leq 3\epsilon||a||_1 \)
 - With probability at least \(1-6\delta^{1/4} \), where \(||a||_1 = \sum_i |a_i| \)

Finally, Sketching for LR

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + x_i^{(t)} y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)}) \right\} \]

- Never need to know size of vocabulary!
- At every iteration, update Count-Min matrix:

- Making a prediction:

- Scales to huge problems, great practical implications...
Hash Kernels

• Count-Min sketch not designed for negative updates
• Biased estimates of dot products

• **Hash Kernels**: Very simple, but powerful idea to remove bias
• Pick 2 hash functions:
 – \(h \): Just like in Count-Min hashing
 – \(\xi \): Sign hash function
 * Removes the bias found in Count-Min hashing (see homework)

• Define a “kernel”, a projection \(\phi \) for \(x \):

Hash Kernels Preserve Dot Products

\[
\phi_i(x) = \sum_{j:h(j)=i} \xi(j)x_j
\]

• Hash kernels provide unbiased estimate of dot-products!

• Variance decreases as \(O(1/m) \)

• Choosing \(m \)? For \(\varepsilon > 0 \), if

\[
m = O \left(\frac{\log N}{\varepsilon^2} \right)
\]

 – Under certain conditions...
 – Then, with probability at least \(1-\delta \):

\[
(1 - \varepsilon)\|x - x'\|_2 \leq \|\phi(x) - \phi(x')\|_2^2 \leq (1 + \varepsilon)\|x - x'\|_2^2
\]
Learning With Hash Kernels

• Given hash kernel of dimension m, specified by h and ξ
 – Learn m dimensional weight vector
• Observe data point x
 – Dimension does not need to be specified a priori!
• Compute $\phi(x)$:
 – Initialize $\phi(x)$
 – For non-zero entries j of x:

• Use normal update as if observation were $\phi(x)$, e.g., for LR using SGD:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + \phi_i(x^{(t)}) y^{(t)} - P(Y = 1|\phi(x^{(t)}), w^{(t)}) \right\}$$

Interesting Application of Hash Kernels:
Multi-Task Learning

• Personalized click estimation for many users:
 – One global click prediction vector w:
 – But...
 – A click prediction vector w_u per user u:
 – But...
• Multi-task learning: Simultaneously solve multiple learning related problems:
 – Use information from one learning problem to inform the others
• In our simple example, learn both a global w and one w_u per user:
 – Prediction for user u:
 – If we know little about user u:
 – After a lot of data from user u:

©Sham Kakade 2017
Problems with Simple Multi-Task Learning

• Dealing with new user is annoying, just like dealing with new words in vocabulary

• Dimensionality of joint parameter space is HUGE, e.g. personalized email spam classification from Weinberger et al.:
 – 3.2M emails
 – 40M unique tokens in vocabulary
 – 430K users
 – 16T parameters needed for personalized classification!

Hash Kernels for Multi-Task Learning

• Simple, pretty solution with hash kernels:
 – Very multi-task learning as (sparse) learning problem with (huge) joint data point z for point x and user u:

• Estimating click probability as desired:

• Address huge dimensionality, new words, and new users using hash kernels:
Simple Trick for Forming Projection $\phi(x,u)$

- Observe data point x for user u
 - Dimension does not need to be specified a priori and user can be new!

- Compute $\phi(x,u)$:
 - Initialize $\phi(x,u)$
 - For non-zero entries j of x:
 - E.g., j='Obamacare'
 - Need two contributions to ϕ:
 - Global contribution
 - Personalized Contribution
 - Simply:

- Learn as usual using $\phi(x,u)$ instead of $\phi(x)$ in update function

Results from Weinberger et al. on Spam Classification: Effect of m

Figure 2. The decrease of uncaught spam over the baseline classifier averaged over all users. The classification threshold was chosen to keep the not-spam misclassification fixed at 1%. The hashed global classifier (global-hashed) converges relatively soon, showing that the distortion error ϵ_d vanishes. The personalized classifier results in an average improvement of up to 30%.
Results from Weinberger et al. on Spam Classification: Multi-Task Effect

Figure 3: Results for users clustered by training emails. For example, the bucket [8, 15] consists of all users with eight to fifteen training emails. Although users in buckets with large amounts of training data do benefit more from the personalized classifier (up to 65% reduction in spam), even users that did not contribute to the training corpus at all obtain almost 20% spam-reduction.

What you need to know

- Hash functions
- Bloom filter
 - Test membership with some false positives, but very small number of bits per element
- Count-Min sketch
 - Positive counts: upper bound with nice rates of convergence
 - General case
- Application to logistic regression
- Hash kernels:
 - Sparse representation for feature vectors
 - Very simple, use two hash function (Can use one hash function...take least significant bit to define ξ)
 - Quickly generate projection ϕ(x)
 - Learn in projected space
- Multi-task learning:
 - Solve many related learning problems simultaneously
 - Very easy to implement with hash kernels
 - Significantly improve accuracy in some problems (if there is enough data from individual users)