Case Study 1: Estimating Click Probabilities

Tackling an Unknown Number of Features with Sketching

Announcements:

- HW1 due next week
- updated TA office hours
- Project Proposals due tomo:
 - ‘big data’ questions v.s. ‘real data’ questions

- Today:
 - Review: bloom filter
 - Sketching counts; Hash kernels
Problem 2: Unknown Number of Features

- For example, bag-of-words features for text data:
 - “Mary had a little lamb, little lamb…”

- What’s the dimensionality of x?
- What if we see new word that was not in our vocabulary?
 - Obamacare
 - Theoretically, just keep going in your learning, and initialize $w_{\text{Obamacare}} = 0$
 - In practice, need to re-allocate memory, fix indices,… A big problem for Big Data

What Next?

- Hashing & Sketching!
 - Addresses both dimensionality issues and new features in one approach!

- Let’s start with a much simpler problem: Is a string in our vocabulary?
 - Membership query

- How do we keep track?
 - Explicit list of strings
 - Very slow
 - Fancy Trees and Tries
 - Hard to implement and maintain
 - Hash tables?
Hash Functions and Hash Tables

- Hash functions map keys to integers (bins):
 - Keys can be integers, strings, objects, ...

- Simple example: mod
 - \(h(i) = (a_i + b) \mod m \)
 - \(a = 7, b = 11, m = 32 \)
 - \(h(i) = 39 \mod 32 = 7 \)
 - Random choice of \((a,b)\) (usually primes)
 - If inputs are uniform, bins are uniformly used
 - From two results can recover \((a,b)\), so not pairwise independent \(
 \rightarrow \text{Typically use fancier hash functions} \)

- Hash table:
 - Store list of objects in each bin
 - Exact, but storage still linear in size of object ids, which can be very long
 - E.g., hashing very long strings, entire documents

Hash Bit-Vector Table-Based Membership Query

- Approximate queries with one-sided error: Accept false positives only
 - If we say no, element is not in set
 - If we say yes, element is very to be likely in set

- Given hash function, keep binary bit vector \(v \) of length \(m \):
 - Query \(Q(i) \): Element \(i \) in set?
 - \(v(h(i)) = 0 \) \(\Rightarrow \) \(Q(i) = 0 \)
 - \(v(h(i)) = 1 \) \(\Rightarrow \) \(Q(i) = 1 \)

- Collisions:

- Guarantee: One-sided errors, but may make many mistakes
 - How can we improve probability of correct answer?
Bloom Filter: Multiple Hash Tables

- Single hash table \rightarrow Many false positives
- Multiple hash tables with independent hash functions
 - Apply $h_1(i), \ldots, h_d(i)$, set all bits to 1
 \[
 \forall i \in [1..n], \quad h_j(i) = \text{set all bits to } 1
 \]
- Query $Q(i)$?
 \[
 \text{if } \forall_j \quad h_j(i) = 1 \quad \Rightarrow \quad \text{"Yes"}
 \]
 \[
 \text{else} \quad \text{No!}
 \]
- Significantly decrease probability of false positives

Analysis of Bloom Filter

- Want to keep track of n elements with false positive probability of $\delta > 0$... how large m & p?

- Simple analysis yields:
 \[
 m = n \log_2 \frac{1}{\delta} \approx 1.5n \log_2 \frac{1}{\delta}
 \]
 \[
 p = \log_2 \frac{1}{\delta}
 \]
 \[
 \Rightarrow \quad \text{prob (false positive)} \leq \delta
 \]
Case Study 1: Estimating Click Probabilities

Tackling an Unknown Number of Features with Sketching

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Sham Kakade
April 6, 2017

Sketching Counts

- Bloom Filter is super cool, but not what we need...
 - We don’t just care about whether a feature existed before, but to keep track of counts of occurrences of features! (assuming \(x_i\) integer)
- Recall the LR update:

\[
 w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y_i^{(t)} - P(Y = 1|x_i^{(t)}, w_i^{(t)})] \right\}
\]

- Must keep track of (weighted) counts of each feature:
 - E.g., with sparse data, for each non-zero dimension \(i\) in \(x^{(t)}\):

- Can we generalize the Bloom Filter?

©Sham Kakade 2017
Count-Min Sketch: single vector

- Simpler problem: Count how many times you see each string
- Single hash function:
 - Keep Count vector of length m
 - every time see string i:

$$\text{Count}[h(i)] \leftarrow \text{Count}[h(i)] + 1$$

- Again, collisions could be a problem:
 - a_i is the count of element i

Count-Min Sketch: general case

- Keep p by m Count matrix

- p hash functions:
 - Just like in Bloom Filter, decrease errors with multiple hashes
 - Every time see string i:

$$\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1$$
Querying the Count-Min Sketch

\(\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1 \)

- Query \(Q(i) \)?
 - What is in \(\text{Count}[j,k] \)?

 - Thus:

 - Return:

Analysis of Count-Min Sketch

\[\hat{a}_i = \min_j \text{Count}[j, h(i)] \geq a_i \]

- Set:

 \[m = \left\lceil \frac{\epsilon}{\epsilon} \right\rceil \quad p = \left\lceil \ln \frac{1}{\delta} \right\rceil \]

- Then, after seeing \(n \) elements:

 \[\hat{a}_i \leq a_i + \epsilon n \]

- With probability at least \(1-\delta \)
Proof of Count-Min for Point Query with Positive Counts: Part 1 – Expected Bound

• $l_{i,j,k}$ = indicator that i & k collide on hash j:

• Bounding expected value:

• $X_{i,j}$ = total colliding mass on estimate of count of i in hash j:

• Bounding colliding mass:

• Thus, estimate from each hash function is close in expectation

Proof of Count-Min for Point Query with Positive Counts: Part 2 – High Probability Bounds

• What we know: $Count[j, h_j(i)] = a_i + X_{i,j}$
$E[X_{i,j}] \leq \frac{\epsilon}{e} n$

• Markov inequality: For $z_1, ..., z_k$ positive iid random variables

 $P(\forall z_i : z_i > \alpha E[z_i]) < \alpha^{-k}$

• Applying to the Count-Min sketch:
But updates may be positive or negative

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\} \]

- Count-Min sketch for positive & negative case
 - \(a \), no longer necessarily positive
- Update the same: Observe change \(\Delta_i \) to element \(i \):
 \[\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + \Delta_i \]
 - Each \(\text{Count}[j,h(i)] \) no longer an upper bound on \(a_i \)
- How do we make a prediction?

- Bound: \(|\hat{a}_i - a_i| \leq 3\varepsilon ||a||_1 \)
 - With probability at least \(1 - 6\varepsilon^4 \), where \(||a|| = \Sigma_i |a_i| \)

Finally, Sketching for LR

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | \mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\} \]

- Never need to know size of vocabulary!
- At every iteration, update Count-Min matrix:

- Making a prediction:

- Scales to huge problems, great practical implications...
Hash Kernels

- Count-Min sketch not designed for negative updates
- Biased estimates of dot products

- **Hash Kernels**: Very simple, but powerful idea to remove bias

Pick 2 hash functions:
- h: Just like in Count-Min hashing
- ξ: Sign hash function
 - Removes the bias found in Count-Min hashing (see homework)

- Define a “kernel”, a projection ϕ for x:

Hash Kernels Preserve Dot Products

$$\phi_i(x) = \sum_{j : h(j) = i} \xi(j)x_j$$

- Hash kernels provide unbiased estimate of dot-products!

- Variance decreases as $O(1/m)$

- Choosing m? For $\epsilon>0$, if
 $$m = O\left(\frac{\log N}{\epsilon^2}\right)$$
 - Under certain conditions...
 - Then, with probability at least 1-δ:

 $$(1 - \epsilon) ||x - x'||_2^2 \leq ||\phi(x) - \phi(x')||_2^2 \leq (1 + \epsilon) ||x - x'||_2^2$$
Learning With Hash Kernels

- Given hash kernel of dimension m, specified by h and ξ
 - Learn m dimensional weight vector
- Observe data point x
 - Dimension does not need to be specified a priori!
- Compute $\phi(x)$:
 - Initialize $\phi(x)$
 - For non-zero entries j of x_j:

- Use normal update as if observation were $\phi(x)$, e.g., for LR using SGD:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + \phi_i(x^{(t)})[y^{(t)}] - P(Y = 1|\phi(x^{(t)}), w^{(t)}) \right\} \]

Interesting Application of Hash Kernels: Multi-Task Learning

- Personalized click estimation for many users:
 - One global click prediction vector w:
 - But...
 - A click prediction vector w_u per user u:
 - But...
- Multi-task learning: Simultaneously solve multiple learning related problems:
 - Use information from one learning problem to inform the others
- In our simple example, learn both a global w and one w_u per user:
 - Prediction for user u:
 - If we know little about user u:
 - After a lot of data from user u:
Problems with Simple Multi-Task Learning

- Dealing with new user is annoying, just like dealing with new words in vocabulary

- Dimensionality of joint parameter space is HUGE, e.g. personalized email spam classification from Weinberger et al.:
 - 3.2M emails
 - 40M unique tokens in vocabulary
 - 430K users
 - 16T parameters needed for personalized classification!

Hash Kernels for Multi-Task Learning

- Simple, pretty solution with hash kernels:
 - Very multi-task learning as (sparse) learning problem with (huge) joint data point \(z \) for point \(x \) and user \(u \):

- Estimating click probability as desired:

- Address huge dimensionality, new words, and new users using hash kernels:
Simple Trick for Forming Projection $\phi(x,u)$

- Observe data point x for user u
 - Dimension does not need to be specified a priori and user can be new!

- Compute $\phi(x,u)$:
 - Initialize $\phi(x,u)$
 - For non-zero entries j of x:
 - E.g., j='Obamacare'
 - Need two contributions to ϕ:
 - Global contribution
 - Personalized Contribution
 - Simply:

- Learn as usual using $\phi(x,u)$ instead of $\phi(x)$ in update function

Results from Weinberger et al. on Spam Classification: Effect of m

Figure 2. The decrease of uncaught spam over the baseline classifier averaged over all users. The classification threshold was chosen to keep the not-spam misclassification fixed at 1%. The hashed global classifier (global-hashed) converges relatively soon, showing that the distortion error ϵ_d vanishes. The personalized classifier results in an average improvement of up to 30%.
Results from Weinberger et al. on Spam Classification: Multi-Task Effect

Figure 3: Results for users clustered by training emails. For example, the bucket [8, 15] consists of all users with eight to fifteen training emails. Although users in buckets with large amounts of training data do benefit more from the personalized classifier (up to 65% reduction in spam), even users that did not contribute to the training corpus at all obtain almost 20% spam-reduction.

What you need to know

• Hash functions
• Bloom filter
 – Test membership with some false positives, but very small number of bits per element
• Count-Min sketch
 – Positive counts: upper bound with nice rates of convergence
 – General case
• Application to logistic regression
• Hash kernels:
 – Sparse representation for feature vectors
 – Very simple, use two hash function (Can use one hash function...take least significant bit to define ξ)
 – Quickly generate projection ϕ(x)
 – Learn in projected space
• Multi-task learning:
 – Solve many related learning problems simultaneously
 – Very easy to implement with hash kernels
 – Significantly improve accuracy in some problems (if there is enough data from individual users)