
Optimization in the “Big Data” Regime

Sham M. Kakade

Machine Learning for Big Data
CSE547/STAT548

University of Washington

S. M. Kakade (UW) Optimization for Big data 1 / 18

Announcements...

HW2 due Mon.
Work on your project milestones

read/related work summary
some empirical work

Today:
Review: discuss classical optimization
New: How do we optimize in the “big data” regime, with large
sample sizes and large dimension?
Bridge classical to modern optimization.

S. M. Kakade (UW) Optimization for Big data 2 / 18

Kira Goldner

Machine Learning and the Big Data Regime...

goal: find a d-dim parameter vector which minimizes the loss on n
training examples.

have n training examples (x1, y1), . . . (xn, yn)

have parametric a classifier hθ(x ,w), where w is a d dimensional
vector.

min
w

L(w) where L(w) =
∑

i

loss(h(xi ,w), yi)

“Big Data Regime”: How do you optimize this when n and d are
large? memory? parallelization?

Can we obtain linear time algorithms to find an ε-accurate solution?
i.e. find ŵ so that

L(ŵ)−min
w

L(w) ≤ ε

S. M. Kakade (UW) Optimization for Big data 3 / 18

Kira Goldner

Kira Goldner

Kira Goldner

Plan:

Goal: algorithms to get fixed target accuracy ε.
Review: classical optimization viewpoints
A modern view: can be bridge classical optimization to modern
problems?

Dual Coordinate Descent Methods
Stochastic Variance Reduced Gradient method (SVRG)

S. M. Kakade (UW) Optimization for Big data 4 / 18

Abstraction: Least Squares

min
w

L(w) where L(w) =
n∑

i=1

(w · xi − yi)
2 + λ‖w‖2

How much computation time is required to to get ε accuracy?

n points, d dimensions.
“Big Data Regime”: How do you optimize this when n and d are
large?
More general case: Optimize sums of convex (or non-convex
functions?

some guarantees will still hold

Aside: think of x as a large feature representation.

S. M. Kakade (UW) Optimization for Big data 5 / 18

Review: Direct Solution

min
w

L(w) where L(w) =
n∑

i=1

(w · xi − yi)
2 + λ‖w‖2

solution:
w = (X>X + λI)−1X>Y

where X be the n × d matrix whose rows are xi , and Y is an n-dim
vector.
numerical solution: the “backslash” implementation.
time complexity: O(nd2) and memory O(d2)

Not feasible due to both time and memory.

S. M. Kakade (UW) Optimization for Big data 6 / 18

Kira Goldner

Kira Goldner

Review: Gradient Descent (and Conjugate GD)

min
w

L(w) where L(w) =
n∑

i=1

(w · xi − yi)
2 + λ‖w‖2

n points, d dimensions,
λmax, λmin are max and min eigs. of “design matrix” 1

n
∑

i xix>i
iterations and computation time to get ε accuracy:

Gradient Descent (GD):

λmax

λmin
log 1/ε,

λmax

λmin
nd log 1/ε

Conjugate Gradient Descent:√
λmax

λmin
log 1/ε,

√
λmax

λmin
nd log 1/ε

memory: O(d)

Better runtime and memory, but still costly.

S. M. Kakade (UW) Optimization for Big data 7 / 18

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Review: Stochastic Gradient Descent (SGD)

SGD update rule: at each time t ,

sample a point (xi , yi)

w ← w − η(w · xi − yi)xi

Problem: even if w = w∗, the update changes w .
Rate: convergence rate is O(1/ε), with decaying η

simple algorithm, light on memory, but poor convergence rate

S. M. Kakade (UW) Optimization for Big data 8 / 18

Review: Stochastic Gradient Descent (SGD)

SGD update rule: at each time t ,

sample a point (xi , yi)

w ← w − η(w · xi − yi)xi

Problem: even if w = w∗, the update changes w .
Rate: convergence rate is O(1/ε), with decaying η

simple algorithm, light on memory, but poor convergence rate

S. M. Kakade (UW) Optimization for Big data 8 / 18

Kira Goldner

Kira Goldner

Review: Stochastic Gradient Descent (SGD)

SGD update rule: at each time t ,

sample a point (xi , yi)

w ← w − η(w · xi − yi)xi

Problem: even if w = w∗, the update changes w .
Rate: convergence rate is O(1/ε), with decaying η

simple algorithm, light on memory, but poor convergence rate
S. M. Kakade (UW) Optimization for Big data 8 / 18

Kira Goldner

Kira Goldner

Review: Stochastic Gradient Descent

λmin is the min eig. of 1
n
∑

i xix>i
Suppose gradients are bounded by B.
To get ε accuracy:

iterations to get ε-accuracy:

B2

λminε

Computation time to get ε-accuracy:

dB2

λminε

S. M. Kakade (UW) Optimization for Big data 9 / 18

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Regression in the big data regime?

min
w

L(w)

How much computation time is required to to get ε accuracy?

“Big Data Regime”: How do you optimize this when n and d are
large?

Can we ’fix’ the instabilities of SGD?
Let’s look at (regularized) linear regression.

Convex optimization: All results can be generalized to smooth+strongly
convex loss functions.

Non-convex optimization: some ideas generalize.

S. M. Kakade (UW) Optimization for Big data 10 / 18

Kira Goldner

Duality (without Duality)

w = (X>X + λI)−1X>Y
= X>(XX> + λI)−1Y

:=
1
λ

X>α

where α = (I + XX>/λ)−1Y .

idea: let’s compute the n-dim vector α.
let’s do this with coordinate ascent

S. M. Kakade (UW) Optimization for Big data 11 / 18

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

SDCA: stochastic dual coordinate ascent

G(α1, α2, . . . αn) =
1
2
α>(I + XX>/λ)α− Y>α

the minimizer of G(α) is

α = (I + XX>/λ)−1Y

SDCA:
start with α = 0.
choose coordinate i randomly, and update:

αi = argminzG(α1, . . . αi−1, z, . . . , αn)

easy to do as we touch just one datapoint.
return w = 1

λX>α.

S. M. Kakade (UW) Optimization for Big data 12 / 18

Kira Goldner

Kira Goldner

Kira Goldner

SDCA: the algorithm

G(α1, α2, . . . αn) =
1
2
α>(I + XX>/λ)α− Y>α

start with α = 0, w = 1
λX>α.

1 choose coordinate i randomly, and compute difference:

∆αi =
(yi − w · xi)− αi

1 + ‖xi‖2/λ

2 update:

αi ← αi + ∆αi , w ← w +
1
λ

xi ·∆αi

return w = 1
λX>α.

S. M. Kakade (UW) Optimization for Big data 13 / 18

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Guarantees: speedups for the big data regime

n points, d dimensions, λav average eigenvalue
Computation time to get ε accuracy gradient descent:
(Shalev-Shwartz & Zhang ’12)

GD vs SDCA:

λmax

λmin
n d log 1/ε→

(
n + d

λav

λmin

)
d log 1/ε

conjugate GD vs acceleration+SDCA.
One can accelerate SDCA as well. (Frosting, Ge, K., Sidford, 2015))

S. M. Kakade (UW) Optimization for Big data 14 / 18

Kira Goldner

Kira Goldner

Kira Goldner

Comparisons to GD

both algorithms touch one data point at a time, with same
computational cost per iteration.
SDCA has “learning rate” which adaptive to the data point.
GD has convergence rate of 1/ε and SDCA has log 1/ε convergence
rate.
memory: SDCA: O(n + d), SGD: O(d)

SDCA: can touch points in any order.

S. M. Kakade (UW) Optimization for Big data 15 / 18

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

SDCA advantages/disadvantages

What about more general convex problems? e.g.

min
w

L(w) where L(w) =
∑

i

loss(h(xi ,w), yi)

the basic idea (formalized with duality) is pretty general for convex loss(·).
works very well in practice.

memory: SDCA needs O(n + d) memory, while SGD is only O(d).
What about an algorithm for non-convex problems?

SDCA seems heavily tied to the convex case.
would an algo that is highly accurate in the convex case and sensible in
the non-convex case.

S. M. Kakade (UW) Optimization for Big data 16 / 18

Kira Goldner

(another idea) Stochastic Variance Reduced Gradient
(SVRG)

1 exact gradient computation: at stage s, using w̃s, compute:

∇L(w̃s) =
1
n

n∑
i=1

∇loss(w̃s, (xi , yi))

2 corrected SGD: initialize w ← w̃s. for m steps,

sample a point (x , y)
w ← w − η

(
∇loss(w , (x , y))−∇loss(w̃s, (x , y)) +∇L(w̃s)

)
3 update and repeat: w̃s+1 ← w .

Two ideas:
If w̃ = w∗, then no update.
unbiased updates: blue term is mean 0.

S. M. Kakade (UW) Optimization for Big data 17 / 18

(another idea) Stochastic Variance Reduced Gradient
(SVRG)

1 exact gradient computation: at stage s, using w̃s, compute:

∇L(w̃s) =
1
n

n∑
i=1

∇loss(w̃s, (xi , yi))

2 corrected SGD: initialize w ← w̃s. for m steps,

sample a point (x , y)
w ← w − η

(
∇loss(w , (x , y))−∇loss(w̃s, (x , y)) +∇L(w̃s)

)
3 update and repeat: w̃s+1 ← w .

Two ideas:
If w̃ = w∗, then no update.
unbiased updates: blue term is mean 0.

S. M. Kakade (UW) Optimization for Big data 17 / 18

Guarantees of SVRG

n points, d dimensions, λav average eigenvalue
Computation time to get ε accuracy gradient descent:
(Johnson & Zhang ’13)

GD vs SDCA:

λmax

λmin
n d log 1/ε→

(
n + d

λav

λmin

)
d log 1/ε

conjugate GD vs ?? √
λmax

λmin
n d log 1/ε→ ??

memory: O(d)

S. M. Kakade (UW) Optimization for Big data 18 / 18

