Optimization in the "Big Data" Regime

Sham M. Kakade

Machine Learning for Big Data CSE547/STAT548

University of Washington

- HW2 due Mon.
- Work on your project milestones
 - read/related work summary
 - some empirical work

Today:

- Review: discuss classical optimization
- New: How do we optimize in the "big data" regime, with large sample sizes and large dimension?
 Bridge classical to modern optimization.

Machine Learning and the Big Data Regime...

goal: find a *d*-dim parameter vector which minimizes the loss on *n* training examples.

- have *n* training examples $(x_1, y_1), \ldots, (x_n, y_n)$
- have parametric a classifier $h_{e}(x, w)$, where w is a d dimensional vector.

$$\min_{w} L(w) \text{ where } L(w) = \sum_{i} \operatorname{loss}(h(x_i, w), y_i)$$

• "Big Data Regime": How do you optimize this when *n* and *d* are large? memory? parallelization?

Can we obtain linear time algorithms to find an ϵ -accurate solution? i.e. find \hat{w} so that

$$L(\hat{w}) - \min_{w} L(w) \leq \epsilon$$

- Goal: algorithms to get fixed target accuracy ϵ .
- Review: classical optimization viewpoints
- A modern view: can be bridge classical optimization to modern problems?
 - Dual Coordinate Descent Methods
 - Stochastic Variance Reduced Gradient method (SVRG)

$$\min_{w} L(w) \text{ where } L(w) = \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda \|w\|^2$$

How much computation time is required to to get ϵ accuracy?

- *n* points, *d* dimensions.
- "Big Data Regime": How do you optimize this when *n* and *d* are large?
- More general case: Optimize sums of convex (or non-convex functions?
 - some guarantees will still hold

Aside: think of *x* as a large feature representation.

$$\min_{w} L(w) \text{ where } L(w) = \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda \|w\|^2$$

solution:

$$\vec{W} = (X^{\top}X + \lambda I)^{-1}X^{\top}Y$$

where *X* be the $n \times d$ matrix whose rows are x_i , and *Y* is an *n*-dim vector.

- numerical solution: the "backslash" implementation.
- time complexity: $O(nd^2)$ and memory $O(d^2)$

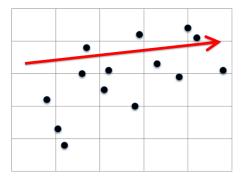
Not feasible due to both time and memory.

Review: Gradient Descent (and Conjugate GD)

$$GD: \qquad W \leftarrow W \leftarrow M \nabla L(W) \quad n = \frac{1}{|x|} \\ \underset{w}{\min} L(w) \text{ where } L(w) = \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda ||w||^2 \\ \bullet n \text{ points, } d \text{ dimensions,} \\ \bullet \lambda_{\max}, \lambda_{\min} \text{ are max and min eigs. of "design matrix"} \frac{1}{n} \sum_{i} x_i x_i^\top \\ \bullet \text{ # iterations and computation time to get } \epsilon \text{ accuracy:} \\ \bullet \text{ Gradient Descent (GD):} \\ &= \chi^\top \chi \\ \bullet \text{ Conjugate Gradient Descent:} \\ \sqrt{\frac{\lambda_{\max}}{\lambda_{\min}}} \log 1/\epsilon, \quad \sqrt{\frac{\lambda_{\max}}{\lambda_{\min}}} nd \log 1/\epsilon \\ &= \sum_{i=1}^{n} (x_i - x_i)^2 + \lambda ||w||^2 \\ \bullet \text{ memory: } O(d) \\ \bullet \text{ memory: } O(d) \\ \end{array}$$

Better runtime and memory, but still costly.

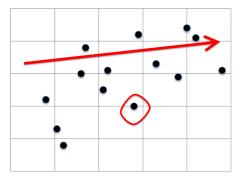
Review: Stochastic Gradient Descent (SGD)



• SGD update rule: at each time t,

sample a point (x_i, y_i) $w \leftarrow w - \eta (w \cdot x_i - y_i) x_i$

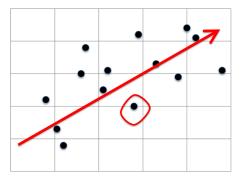
Review: Stochastic Gradient Descent (SGD)



• SGD update rule: at each time *t*,

sample a point (x_i, y_i) $w \leftarrow w - \eta (w \cdot x_i - y_i) x_i$ $(\lambda = 0)$

Review: Stochastic Gradient Descent (SGD)



at opt. d:= y.- w x.

• SGD update rule: at each time *t*,

sample a point (x_i, y_i) $w \leftarrow w - \eta (w \cdot x_i - y_i) x_i$

 Problem: even if w = w_{*}, the update changes w.
 Rate: convergence rate is O(1/ε), with decaying η simple algorithm, light on memory, but poor convergence rate

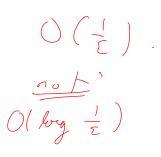
Review: Stochastic Gradient Descent

- λ_{\min} is the min eig. of $\frac{1}{n} \sum_{i} x_i x_i^{\top}$
- Suppose gradients are bounded by *B*.
- To get ϵ accuracy:
 - # iterations to get ε-accuracy:

• Computation time to get ϵ -accuracy:

 $\frac{dB^2}{\lambda_{\min}\epsilon}$

 $\frac{B^2}{\lambda_{\min}\epsilon}$



 $\min_{w} L(w)$

How much computation time is required to to get ϵ accuracy?

• "Big Data Regime": How do you optimize this when *n* and *d* are large?

• Gan we 'fix' the instabilities of SGD?

- Let's look at (regularized) linear regression.
 - Convex optimization: All results can be generalized to smooth+strongly convex loss functions.
 - ۲
 - Non-convex optimization: some ideas generalize.

Duality (without Duality)

$$X \in \mathbb{R}^{n \times d} = [X_1 | \cdots | X_n]^{T} \quad Y \in \mathbb{R}^n$$

$$w^{*} = (X^{\top}X + \lambda I)^{-1}X^{\top}Y$$
$$= X^{\top}(XX^{\top} + \lambda I)^{-1}Y$$
$$:= \frac{1}{\lambda}X^{\top}\alpha$$

where
$$\alpha = (I + XX^{\top}/\lambda)^{-1}Y$$
.

- idea: let's compute the n-dim vector α .
- Iet's do this with coordinate ascent $G(z) = (A_{d-b})^{2} \quad \text{or} \quad A_{d-b}$

 $\chi \chi^{T} \epsilon n^{*}$

not ince tible

2=A-15

SDCA: stochastic dual coordinate ascent

$$G(\alpha_1, \alpha_2, \dots \alpha_n) := \frac{1}{2} \alpha^\top (I + X X^\top / \lambda) \alpha - Y^\top \alpha$$

• the minimizer of $G(\alpha)$ is

$$\alpha = (I + XX^{\top}/\lambda)^{-1}Y$$

- SDCA:
 - start with $\alpha = 0$.
 - choose coordinate *i* randomly, and update:

$$\alpha_i = \operatorname{argmin}_{z} G(\alpha_1, \ldots, \alpha_{i-1}, z, \ldots, \alpha_n)$$

easy to do as we touch just one datapoint.
return w = ¹/₁X^Tα.

SDCA: the algorithm

$$G(\alpha_1, \alpha_2, \dots \alpha_n) = \frac{1}{2} \alpha^\top (I + X X^\top / \lambda) \alpha - Y^\top \alpha$$

at

what

(x - = y - v

- *n* points, *d* dimensions, λ_{av} average eigenvalue
- Computation time to get
 e accuracy gradient descent: (Shalev-Shwartz & Zhang '12)
 - GD vs SDCA:

$$\frac{\lambda_{\max}}{\lambda_{\min}} n d \log 1/\epsilon \rightarrow \left(n + d \frac{\lambda_{\mathrm{av}}}{\lambda_{\min}} \right) d \log 1/\epsilon$$

• conjugate GD vs acceleration+SDCA. One can accelerate SDCA as well. (Frosting, Ge, K., Sidford, 2015)) \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}

Comparisons to GD

SDC4 SGD

- both algorithms touch one data point at a time, with same computational cost per iteration.
- SDCA has "learning rate" which adaptive to the data point.
- GD has convergence rate of $1/\epsilon$ and SDCA has log $1/\epsilon$ convergence rate.
- memory: SDCA: O(n + d), SGD: O(d)
- SDCA: can touch points in *any* order.

• What about more general convex problems? e.g.

$$\min_{w} L(w) \text{ where } L(w) = \sum_{i} \operatorname{loss}(h(x_i, w), y_i)$$

- the basic idea (formalized with duality) is pretty general for convex $\mathrm{loss}(\cdot).$
- works very well in practice.
- memory: SDCA needs O(n + d) memory, while SGD is only O(d).
- What about an algorithm for non-convex problems?
 - SDCA seems heavily tied to the convex case.
 - would an algo that is highly accurate in the convex case and sensible in the non-convex case.

(another idea) Stochastic Variance Reduced Gradient (SVRG)

• exact gradient computation: at stage s, using \tilde{w}_s , compute:

$$\nabla L(\widetilde{w}_{s}) = \frac{1}{n} \sum_{i=1}^{n} \nabla \operatorname{loss}(\widetilde{w}_{s}, (x_{i}, y_{i}))$$

2 corrected SGD: initialize $w \leftarrow \widetilde{w}_s$. for *m* steps,

sample a point (x, y) $w \leftarrow w - \eta \left(\nabla \operatorname{loss}(w, (x, y)) - \nabla \operatorname{loss}(\widetilde{w}_{s}, (x, y)) + \nabla L(\widetilde{w}_{s})\right)$

③ update and repeat: \tilde{w}_{s+1} ← w.

(another idea) Stochastic Variance Reduced Gradient (SVRG)

• exact gradient computation: at stage s, using \tilde{w}_s , compute:

$$\nabla L(\widetilde{w}_{s}) = \frac{1}{n} \sum_{i=1}^{n} \nabla \operatorname{loss}(\widetilde{w}_{s}, (x_{i}, y_{i}))$$

2 corrected SGD: initialize $w \leftarrow \tilde{w}_s$. for *m* steps,

sample a point (x, y) $w \leftarrow w - \eta \left(\nabla \operatorname{loss}(w, (x, y)) - \nabla \operatorname{loss}(\widetilde{w}_s, (x, y)) + \nabla L(\widetilde{w}_s)\right)$

3 update and repeat: $\widetilde{w}_{s+1} \leftarrow w$.

Two ideas:

- If $\tilde{w} = w_*$, then no update.
- unbiased updates: blue term is mean 0.

S. M. Kakade (UW)

- *n* points, *d* dimensions, λ_{av} average eigenvalue
- Computation time to get
 e accuracy gradient descent: (Johnson & Zhang '13)
 - GD vs SDCA:

$$\frac{\lambda_{\max}}{\lambda_{\min}} n \, d \log 1/\epsilon \to \left(n + \frac{d \lambda_{\text{av}}}{\lambda_{\min}} \right) d \log 1/\epsilon$$

o conjugate GD vs ??

$$\sqrt{rac{\lambda_{\max}}{\lambda_{\min}}} n d \log 1/\epsilon o ??$$

• memory: O(d)