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Announcements...

HW 4 posted soon (short)
Poster session: June 1, 9-11:30a; ask TA/CSE students for help
printing
Projects: the term is approaching the end....

Today:
Quick overview: Parallelization and Deep learning
Bandits:
1 Review: Vanilla k-arm setting,UCB
2 Today: UCB (continued), Thompson, Linear bandits and ad-placement
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The problem

In unsupervised learning, we just have data...
In supervised learning, we have inputs X and labels Y
(often we spend resources to get these labels).
In reinforcement learning (very general), we act in the world, there is
“state” and we observe rewards.
Bandit Settings: We have K decisions each round and we do only
received feedback for the chosen decision...
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Review
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Multi-Armed Bandit Game

K Independent Arms: a ∈ {1, . . .K}
Each arm a returns a random reward Ra if pulled.
(simpler case) assume Ra is not time varying.
Game:

You chose arm at at time t .
You then observe:

Xt = Rat

where Rat is sampled from the underlying distribution of that arm.

The distribution of Ra is not known.
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Ad placement...
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The Goal

We would like to maximize our long term future reward.
Our (possibly randomized) sequential strategy/algorithm A is:

at = A(a1,X1,a2,X2, . . .at−1,Xt−1)

In T rounds, our reward is:

E[
T∑

t=1

Xt |A]

where the expectation is with respect to the reward process and our
algorithm.
Objective: What is a strategy which maximizes our long term
reward?
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Our Regret

Suppose:
µa = E[Ra]

Assume 0 ≤ µa ≤ 1.
Let µ∗ = maxa µa

In expectation, the best we can do is obtain µ∗T reward in T steps.
In T rounds, our regret is:

µ∗T − E

[
T∑

t=1

Xt |A

]
≤??

Objective: What is a strategy which makes our regret small?
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A Naive Strategy

For the first τ rounds, sample each arm τ/K times.
For the remainder of the rounds, choose the arm with best observed
empirical reward.
How good is this strategy? How do we set τ?
Let’s look at confidence intervals.
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Our regret

(Exploration rounds) What is our regret for the first τ rounds?
(Exploitation rounds) What is our regret for the remainder τ rounds?
Our total regret is:

µ∗T −
T∑

t=1

Xt ≤ τ +O

√
log(K/δ)

τ/K
(T − τ)

How do we choose τ?
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The Naive Strategy’s Regret

Choose τ = K 1/3T 2/3 and δ = 1/T .
Theorem: Our total (expected) regret is:

µ∗T − E[
T∑

t=1

Xt |A] ≤ O(K 1/3T 2/3(log(KT ))1/3)
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Can we be more adaptive?

Are we still pulling arms that we know are sub-optimal?
How do we know this??
Let Na,t be the number of times we pulled arm a up to time t .
Confidence interval at time t : with probability greater than 1− δ,

|µ̂a,t − µa| ≤ O

√
log(1/δ)

Na,t

with δ → δ/(TK ), the above bound will hold for all time arms a ∈ [K ]
and timesteps t ≤ T .
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Upper Confidence Bound (UCB) Algorithm

At each time t ,
Pull arm:

at = argmaxµ̂a,t + c

√
log(KT/δ)

Na,t

:= argmaxµ̂a,t + ConfBounda,t

(where c ≤ 10 is a constant).
Observe reward Xt .
Update µa,t , Na,t , and ConfBounda,t .

How well does this do?
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Today
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Instantaneous Regret

With probability greater than 1− δ all the confidence bounds will
hold.
Question: If

argmaxµ̂a,t + ConfBounda,t ≤ µ∗
could UCB pull arm a at time t?
Question: If pull arm a at time t , how much regret do we pay? i.e.

µ∗ − µat ≤??
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Total Regret

Theorem: The total (expected) regret of UCB is:

µ∗T − E[
T∑

t=1

Xt |A] ≤
√

KT log(KT )

This better than the Naive strategy.
Up to log factors, it is optimal.
Practical algorithm?
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Simulation
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Proof Idea: for K = 2

Suppose arm a = 2 is not optimal.
Claim 1: All confidence intervals will be valid (with Pr ≥ 1− δ).
Claim 2: If we pull arm a = 1, then no regret.
Claim 3: If we pull a = 2, then we pay 2Ca,t regret. To see this:

Why?
µ̂a,t + Ca,t ≥ µ̂1,t + C1,t ≥ µ∗

Why?
µa ≥ µ̂a,t − Ca,t

The total regret is: ∑
t

Ca,t ≤
∑

t

1√
Na,t

Note that Na,t ≤ T (and increasing).
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Aside: Logarithmic regret

The previous rates are not a function of problem dependent
parameters.
On any given problem, we expect to eventually start pulling the best
arm.
Define the “gap” as:

∆ = µ∗ −max
a 6=a∗

µa

Theorem: The total (expected) regret of UCB is:

µ∗T − E[
T∑

t=1

Xt |A] ≤ K
∆

log(T )

(same algorithm enjoys this bound.)
Question: How is the “naive” algorithm different?
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Thompson sampling

Practical issues:
how to obtain good confidence intervals?
variants with “similar” performance?

Suppose we are “Bayesian”. We have a posterior distribution

Pr(µa|History<t )

Thompson sampling:
Sample from each posterior:

νa ∼ Pr(µa|History<t )

take action
at = argmaxaνa

update posteriors
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Thompson sampling and Confidence intervals
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