Bandits and Exploration: How do we (optimally) gather information?

Sham M. Kakade

Machine Learning for Big Data CSE547/STAT548

University of Washington

- HW 4 posted soon (short)
- Poster session: June 1, 9-11:30a; ask TA/CSE students for help printing
- Projects: the term is approaching the end....

Today:

- Quick overview: Parallelization and Deep learning
- Bandits:
 - Vanilla k-arm setting
 - 2 Linear bandits and ad-placement
 - Game trees?

- In unsupervised learning, we just have data...
- In supervised learning, we have inputs X and labels Y (often we spend resources to get these labels).
- In reinforcement learning (very general), we act in the world, there is "state" and we observe rewards.
- Bandit Settings: We have *K* decisions each round and we do only received feedback for the chosen decision...

 ν_1 ν_2 ν_3 ν_4 ν_5

Goal: maximize ones' gains in a casino ?

- *K* Independent Arms: $a \in \{1, \ldots, K\}$
- Each arm *a* returns a random reward *R_a* if pulled. (simpler case) assume *R_a* is not time varying.
- Game:
 - You chose arm *a*^{*t*} at time *t*.
 - You then observe:

$$X_t = R_{a_t}$$

where R_{a_t} is sampled from the underlying distribution of that arm.

• The distribution of R_a is not known.

More real motivations...

Clinical trials:

- choose a treatment A_t for patient t
- observe a response $X_t \in \{0,1\}$: $\mathbb{P}(X_t = 1) = \mu_{A_t}$
- Goal: maximize the number of patient healed

Recommendation tasks:

 ν_1

 ν_3

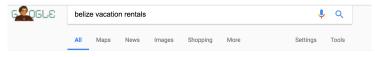
 ν_4

 ν_5

- ν_2 • recommend a movie A_t for visitor t
- observe a rating $X_t \sim \nu_{A_t}$ (e.g. $X_t \in \{1, \ldots, 5\}$)

S. M. Kakade (UW)

Ad placement...



About 9,610,000 results (0.80 seconds)

Vacation Rentals Belize - Located On The Eastern Shore

Ad www.lowcayecottages.com/

4 Stunning Cottages In Tropical Belize, Amazing Views, All Amenities, Book Now!

Vacation Rentals - More Space & Privacy - homeaway.com

44 ★★★★★ rating for homeaway.com Hotel Apartments, Vacation Rentals, Houses, Cabins, B&Bs, and more. When booking a vacation rental, HomeAway is the go-to. – Forbes.com Ratings: Selection 9/10 - Prices 8.5/10 - Nebsite 6.5/10 - Customer service 8/10 Myrite Beach. Key West - Hotel vs Vacation Rental - San Diego - Honolulu - Los Angeles

Vacation Rental - Don't Limit Yourself To Hotels - vrbo.com

4.4 ★★★★ rating for vrbo.com Why Rent A Room When You Can Have The Whole House! Book Online with VRB0™. Search Listings Worldwide - Secure Online Payments - Earn Rental Income - 24/7 Customer Service "Excellent Value" - Smarter Travel Pet-Friendly VRB0 - Last Minute Rentals - Plan Your Best Vacation - Book Online Now

Luxury Beach Villas in Belize - The Perfect Vacation Getaway (ad) www.sandyointresorts.com/Villa/Vacation/Rental=Pelize = (844) 360-1553 Luxurious Beachfront Vacation Rentals. Variety of Villas Available. Book Today

Belize Vacation Rentals

The Goal

- We would like to maximize our long term future reward.
- Our (possibly randomized) sequential strategy/algorithm \mathcal{A} is:

$$a_t = \mathcal{A}(a_1, X_1, a_2, X_2, \dots a_{t-1}, X_{t-1})$$

• In *T* rounds, our reward is:

$$\mathbb{E}[\sum_{t=1}^{T} X_t | \mathcal{A}]$$

where the expectation is with respect to the reward process and our algorithm.

• Objective: What is a strategy which maximizes our long term reward?

Our Regret

- Suppose:
- Assume $0 \le \mu_a \le 1$.
- Let $\mu_* = \max_a \mu_a$
- In expectation, the best we can do is obtain μ_*T reward in T steps.

 $\mu_a = \mathbb{E}[R_a]$

• In *T* rounds, our regret is:

$$\mu_* T - \mathbb{E}\left[\sum_{t=1}^T X_t | \mathcal{A}\right] \leq ??$$

 $0 \leq \mathcal{R}_{c}$

Objective: What is a strategy which makes our regret small?

5.61.1pg

- For the first τ rounds, sample each arm τ/K times.
- For the remainder of the rounds, choose the arm with best observed empirical reward.
- How gets is this strategy? How do we set τ ?
- Let's look at confidence intervals.

Hoeffding's bound

• If we pull arm N_a times, our empirical estimate for arm *a* is:

$$\hat{\mu}_{a} = \frac{1}{N_{a}} \sum_{t:a_{t}=a} X_{t}$$

• By Hoeffding's bound, with probability greater than $1 - \delta$,

$$|\hat{\mu}_{a} - \mu_{a}| \leq \mathcal{O}\sqrt{\frac{\log(1/\delta)}{N_{a}}}$$

• By the union bound, with probability greater than $1 - \delta$,

$$orall m{a}, \ |\hat{\mu}_{m{a}} - \mu_{m{a}}| \leq \mathcal{O} \sqrt{rac{\log(\mathcal{K}/\delta)}{N_{m{a}}}}$$

SES

Our regret

- (Exploration rounds) What is our regret for the first τ rounds?
- (Exploitation rounds) What is our regret for the remainder τ rounds?
- Our total regret is: $w_1 + p_2 = 1 \xi$

$$\mu_* T - \sum_{t=1}^T X_t \leq \tau + \mathcal{O}_{\sqrt{\frac{\log(K/\delta)}{\tau/K}}} (T-\tau)$$

• How do we choose τ ? find τ which min, expression $\tau = K^{-\frac{1}{2}}T^{\frac{2}{3}}$

The Naive Strategy's Regret

• Choose $\tau = \mathbf{K}^{1/3} T^{2/3}$ and $\delta = 1/T$.

15 3

• Theorem: Our total (expected) regret is:

$$\mu_* T - \mathbb{E}[\sum_{t=1}^T X_t | \mathcal{A}] \le \mathcal{O}(K^{1/3} T^{2/3} (\log(KT))^{1/3})$$

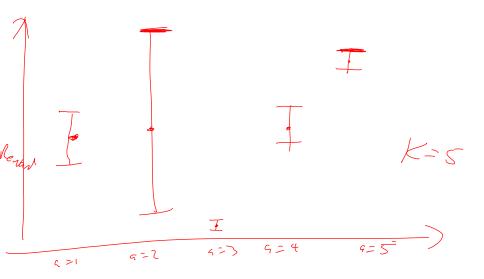
Can we be more adaptive?

- We night Know
 Are we still pulling arms that we know are sub-optimal?
 Are we know this??
- Let $N_{a,t}$ be the number of times we pulled arm *a* up to time *t*.
- Confidence interval at time t: with probability greater than 1δ ,

$$|\hat{\mu}_{a,t} - \mu_{a}| \leq \mathcal{O}\sqrt{\frac{\log(1/\delta)}{N_{a,t}}} / \frac{1}{N_{a,t}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2$$

with δ → δ/(TK), the above bound will hold for all time arms a ∈ [K] and timesteps t ≤ T.

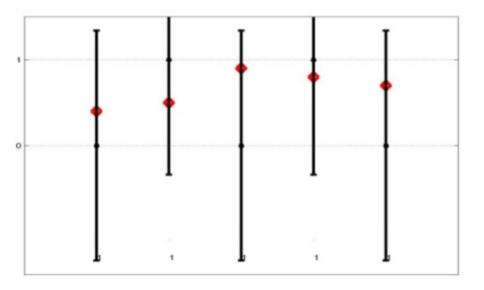
Example



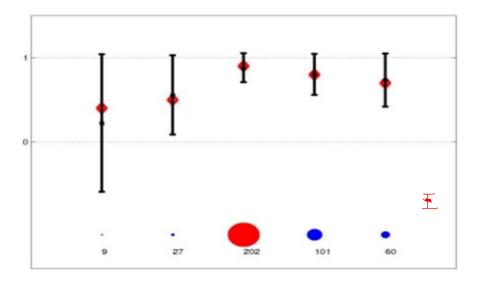
Example

Example

Confidence Bounds...



UCB: a reasonable state of our uncertainty...



- At each time *t*,
 - Pull arm:

$$a_t = \operatorname{argmax} \hat{\mu}_{a,t} + c_{\sqrt{\frac{\log(KT/\delta)}{N_{a,t}}}}$$

:= $\operatorname{argmax} \hat{\mu}_{a,t} + \operatorname{ConfBound}_{a,t}$

(where $c \leq 10$ is a constant).

- Observe reward X_t.
- Update $\mu_{a,t}$, $N_{a,t}$, and ConfBound_{*a*,*t*}.
- How well does this do?

- With probability greater than 1δ all the confidence bounds will hold.
- Question: If

```
\operatorname{argmax} \hat{\mu}_{a,t} + \operatorname{ConfBound}_{a,t} \leq \mu_*
```

could UCB pull arm a at time t?

• Question: If pull arm a at time t, how much regret do we pay? i.e.

$$\mu_* - \mu_{a_t} \leq ??$$

• Theorem: The total (expected) regret of UCB is:

$$\mu_* T - \mathbb{E}[\sum_{t=1}^T X_t | \mathcal{A}] \le \sqrt{KT \log(KT)}$$

- This better than the Naive strategy.
- Up to log factors, it is optimal.
- Practical algorithm?

Proof Idea: for K = 2

- Suppose arm a = 2 is not optimal.
- Claim 1: All confidence intervals will be valid (with $Pr \ge 1 \delta$).
- Claim 2: If we pull arm a = 1, then no regret.
- Claim 3: If we pull a = 2, then we pay 2C_{a,t} regret. To see this:
 Why?

$$\hat{\mu}_{\mathbf{a},t} + \mathbf{C}_{\mathbf{a},t} \geq \hat{\mu}_{\mathbf{1},t} + \mathbf{C}_{\mathbf{1},t} \geq \mu_*$$

• Why?

$$\mu_{a} \geq \hat{\mu}_{a,t} - C_{a,t}$$

• The total regret is:

$$\sum_{t} C_{a,t} \leq \sum_{t} rac{1}{\sqrt{N_{a,t}}}$$

• Note that $N_{a,t} \leq t$ (and increasing).

- http://gdrro.lip6.fr/sites/default/files/ JourneeCOSdec2015-Kaufman.pdf
- https://sites.google.com/site/banditstutorial/