Adaptive Gradient Methods AdaGrad / Adam

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

Announcements:

- HW3 posted
 - Dual coordinate ascent
 - (some review of SGD and random features)

- Today:
 - Review: tradeoffs in large scale learning
 - Today: adaptive gradient methods

Review

Tradeoffs in Large Scale Learning.

Tradeoffs in Large Scale Learning.

- Many issues sources of "error"
- approximation error: our choice of a hypothesis class
- estimation error: we only have n samples
- optimization error: computing exact (or near-exact) minimizers can be costly.
- How do we think about these issues?

The true objective

- hypothesis map $x \in \mathcal{X}$ to $y \in \mathcal{Y}$.
- have *n* training examples $(x_1, y_1), \ldots (x_n, y_n)$ sampled i.i.d. from \mathcal{D} .
- Training objective: have a set of parametric predictors $\{h(x, w) : w \in \mathcal{W}\},\$

$$\min_{\mathbf{w} \in \mathcal{W}} \hat{L}_n(\mathbf{w}) \text{ where } \hat{L}_n(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \operatorname{loss}(h(\mathbf{x}_i, \mathbf{w}), \mathbf{y}_i)$$

• True objective: to generalize to \mathcal{D} ,

$$\min_{w \in \mathcal{W}} L(w)$$
 where $L(w) = \mathbb{E}_{(X,Y) \sim \mathcal{D}} loss(h(X,w), Y)$

Optimization: Can we obtain linear time algorithms to find an ϵ -accurate solution? i.e. find \hat{h} so that

$$L(\hat{\mathbf{w}}) - \min_{\mathbf{w} \in \mathcal{W}} L(\mathbf{w}) \le \epsilon$$

Definitions

• Let h^* is the *Bayes optimal hypothesis*, over all functions from $\mathcal{X} \to \mathcal{Y}$.

$$h^* \in \operatorname{argmin}_h L(h)$$

Let w* is the best in class hypothesis

$$\mathbf{w}^* \in \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}} L(\mathbf{w})$$

• Let w_n be the *empirical risk minimizer:*

$$\mathbf{w}_n \in \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}} \hat{L}_n(\mathbf{w})$$

• Let \tilde{w}_n be what our algorithm returns.

Loss decomposition

Observe:

$$L(\tilde{w}_n) - L(h^*) = L(w^*) - L(h^*)$$
 Approximation error $+ L(w_n) - L(w^*)$ Estimation error $+ L(\tilde{w}_n) - L(w_n)$ Optimization error

- Three parts which determine our performance.
- Optimization algorithms with "best" accuracy dependencies on \hat{L}_n may not be best.

Forcing one error to decrease much faster may be wasteful.

Best in class error

- Fix a class \mathcal{W} . What is the best estimator of w^* for this model?
- For a wide class of models (linear regression, logistic regression, etc), the ERM, w_n , is (in the limit) the best estimator:

$$w_n \in \operatorname{argmin}_{w \in \mathcal{W}} \hat{L}_n(w)$$

- What is the generalization error of best estimator w_n ?
- Mow well can we do? Note:

$$L(\tilde{w}_n) - L(w^*) = + L(w_n) - L(w^*)$$
 Estimation error $+ L(\tilde{w}_n) - L(w_n)$ Optimization error

Can we generalize as well as the sample minimizer, w_n?
 (without computing it exactly)

Statistical Optimality

- Can generalize as well as the sample minimizer, w_n ? (without computing it exactly)
- For a wide class of models (linear regression, logistic regression, etc), we have that the estimation error is:

$$\mathbb{E}[L(w_n)] - L(w^*) \stackrel{n \to \infty}{=} \frac{\sigma_{\text{opt}}^2}{n}$$

where σ_{opt}^2 is an (optimal) problem dependent constant.

- This is the best possible statistical rate.
 (Can quantify the non-asymptotic "burn-in").
- What is the computational cost of achieving exactly this rate? say for large n?

Averaged SGD

• SGD:

$$w_{t+1} \leftarrow w_t - \eta_t \nabla \operatorname{loss}(h(x, w_t), y)$$

- An (asymptotically) optimal algo:
 - Have η_t go to 0 (sufficiently slowly)
 - (iterate averaging) Maintain the a running average:

$$\overline{w_n} = \frac{1}{n} \sum_{t \le n} w_t$$

 (Polyak & Juditsky, 1992) for large enough n and with one pass of SGD over the dataset:

$$\mathbb{E}[L(\overline{w_n})] - L(w^*) \stackrel{n \to \infty}{=} \frac{\sigma_{\text{opt}}^2}{n}$$

Adaptive Gradient Methods AdaGrad / Adam

Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

The Problem with GD (and SGD)

Adaptive Gradient Methods: Convex Case

- What we want?
- Newton's method:

$$w \leftarrow w - [\nabla^2 L(w)]^{-1} \nabla L(w)$$

- Why is this a good idea?
 - Guarantees?
 - Stepsize? 🤟 = 🔟
- = stepsize

- Related ideas:
 - Conjugate Gradient/Acceleration:
 - L-BFGS
 - Quasi-Newton methods

Adaptive Gradient Methods: Non-Cvx Case

- What do we want?
 - Hessian may not be PSD, so is Newton's method a descent method?
- Other ideas:
 - Natural Gradient methods:
 - Curvature adaptive:
 - Adagrad, AdaDelta, RMS prop, ADAM, I-BFGS, heavy ball gradient, momentum
 - Noise injection:
 - Simulated annealing, dropout, Langevin methods
- Caveats:
 - Batch methods may be poor: "On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima"

it Mis PSD.

~ c w - M DL(w)

Natural Gradient Idea

Probabilistic models and maximum likelihood estimation:

$$\widehat{L}(w) = -\log Pr(\text{data}|w)$$

True likelihood function:

$$L(w) = -E_{z \sim D} \log Pr(z|w)$$

where z is sampled form the underling data distribution D.

- Suppose the model is correct, i.e. $z \sim \Pr(z|w^*)$ for some w^*
 - Let's look at the Hessian at w*

$$\nabla^{2}L(w^{*}) = \mathbb{E}_{z \sim \Pr(z|w^{*})}[-\nabla^{2}\log\Pr(z|w^{*})]$$
$$= \mathbb{E}_{z \sim \Pr(z|w^{*})}[\nabla\log\Pr(z|w^{*})(\nabla\log\Pr(z|w^{*}))^{\top}]$$

How do we approximate the Hessian at w?

$$\log f(\omega)$$

$$= \int f(x) = \int \int f(x$$

Fisher Information Matrix

 $\nabla^2 L(\omega) \neq F(\omega)$

Define the Fisher matrix:

$$F(w) := \mathbb{E}_{z \sim \Pr(z|w)} [\nabla \log \Pr(z|w) (\nabla \log \Pr(z|w))^{\top}]$$

- If the model is correct and if $w \to w^*$, then $F(w) \to F(w^*)$ Natural Gradient: Use the update rule: $w \leftarrow w [F(w)]^{-1} \nabla L(w)$

$$w \leftarrow w - [F(w)]^{-1} \nabla L(w)$$

Empirically, use L^(w) and

$$\hat{F}(w) := \underbrace{\frac{1}{t} \sum_{t} g_t(w) g_t(w)^{\top}}_{t}$$

where g_t(w) is the gradient of the log likelihood of the t-th data point

Curvature approximation:

One idea:

$$\nabla^2 \hat{L}(w) \stackrel{?}{\approx} \frac{1}{t} \sum_t g_t(w) g_t(w)^{\top}$$

where g_t(w) is the gradient of the t-th data point

- Quasi-Newton methods, Gauss newton methods
- Ellipsoid method (sort of)

Motivating AdaGrad (Duchi, Hazan, Singer 2011)

• Assuming $\mathbf{w} \in \mathbb{R}^d$, standard stochastic (sub)gradient descent updates are of the form:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \eta_t g_{t,i}$$

Should all features share the same learning rate?

can try festive

- specific learning rates
- Motivating AdaGrad (Duchi, Hazan, Singer 2011):
 Often have high-dimensional feature spaces
 - Many features are irrelevant
 - Rare features are often very informative
- Adagrad provides a feature-specific adaptive learning rate by incorporating knowledge of the geometry of past observations

Why Adapt to Geometry?

Hard

y_t	$x_{t,1}$	$x_{t,2}$	$\chi t,3$
1	1	0	0
-1	.5	0	1
1	5	1	0
-1	0	0	0
1	.5	0	0
-1	1	0	0
1	-1	1	0
-1	5	0	1

Examples from Duchi et al. ISMP 2012 slides

- Frequent, irrelevant
- 2 Infrequent, predictive
- 3 Infrequent, predictive

©Sham Kakade 2017

Not All Features are Created Equal

Examples:

Text data:

The most unsung birthday in American business and technological history this year may be the 50th anniversary of the Xerox 914 photocopier.

High-dimensional image features

Images from Duchi et al. ISMP 2012 slides

^a The Atlantic, July/August 2010.

Visualizing Effect

Credit:

http://imgur.com/a/Hqolp

Regret Minimization Areaning

- How do we assess the performance of an online algorithm?
- Algorithm iteratively predicts $\mathbf{w}^{(t)}$
- Incur **loss** $\ell_t(\mathbf{w}^{(t)})$
- Regret:

What is the total incurred loss of algorithm relative to the best choice of W that could have been made retrospectively

$$R(T) = \sum_{t=1}^{T} \ell_t(\mathbf{w}^{(t)}) - \inf_{\mathbf{w} \in \mathcal{W}} \sum_{t=1}^{T} \ell_t(\mathbf{w})$$

Regret Bounds for Standard SGD

Standard projected gradient stochastic updates:

$$\mathbf{w}^{(t+1)} = \arg\min_{\mathbf{w} \in \mathbf{W}} ||\mathbf{w} - (\mathbf{w}^{(t)} - \eta g_t)||_2^2$$
and regret bound:

Standard regret bound:

$$\sum_{t=1}^{T} \ell_{t}(\mathbf{w}^{(t)}) - \ell_{t}(\mathbf{w}^{*}) \leq \frac{1}{2\eta} ||\mathbf{w}^{(1)} - \mathbf{w}^{*}||_{2}^{2} + \frac{\eta}{2} \sum_{t=1}^{T} ||g_{t}||_{2}^{2}$$

$$\forall \mathbf{w} = \sigma(\mathcal{T}) \qquad (\forall \mathbf{w}^{(1)} + \mathbf{w}^{(1)})$$

$$\forall \mathbf{w} = \sigma(\mathcal{T}) \qquad (\forall \mathbf{w}^{(1)} + \mathbf{w}^{(1)})$$

$$\forall \mathbf{w} = \sigma(\mathcal{T}) \qquad (\forall \mathbf{w}^{(1)} + \mathbf{w}^{(1)})$$

$$\forall \mathbf{w} = \sigma(\mathcal{T}) \qquad (\forall \mathbf{w}^{(1)} + \mathbf{w}^{(1)})$$

$$\forall \mathbf{w} = \sigma(\mathcal{T}) \qquad (\forall \mathbf{w}^{(1)} + \mathbf{w}^{(1)})$$

$$\forall \mathbf{w} = \sigma(\mathcal{T}) \qquad (\forall \mathbf{w}^{(1)} + \mathbf{w}^{(1)})$$

$$\forall \mathbf{w} = \sigma(\mathcal{T}) \qquad (\forall \mathbf{w}^{(1)} + \mathbf{w}^{(1)})$$

$$\forall \mathbf{w} = \sigma(\mathcal{T}) \qquad (\forall \mathbf{w}^{(1)} + \mathbf{w}^{(1)})$$

$$\forall \mathbf{w} = \sigma(\mathcal{T}) \qquad (\forall \mathbf{w}^{(1)} + \mathbf{w}^{(1)})$$

Projected Gradient using Mahalanobis

• Standard projected gradient stochastic updates:

$$\mathbf{w}^{(t+1)} = \arg\min_{\mathbf{w} \in \mathcal{W}} ||\mathbf{w} - (\mathbf{w}^{(t)} - \eta g_t)||_2^2$$

What if instead of an L₂ metric for projection, we considered the

Mahalanobis norm/

$$\mathbf{w}^{(t+1)} = \arg\min_{\mathbf{w} \in \mathcal{W}} ||\mathbf{w} - (\mathbf{w}^{(t)} - \eta A^{-1} g_t)||_A^2$$

Mahalanobis Regret Bounds

$$\mathbf{w}^{(t+1)} = \arg\min_{\mathbf{w} \in \mathcal{W}} ||\mathbf{w} - (\mathbf{w}^{(t)} - \eta A^{-1} g_t)||_A^2$$

- What A to choose?
- Regret bound now:

$$\sum_{t=1}^{T} \ell_t(\mathbf{w}^{(t)}) - \ell_t(\mathbf{w}^*) \le \frac{1}{2\eta} ||\mathbf{w}^{(1)} - \mathbf{w}^*||_2^2 + \frac{\eta}{2} \sum_{t=1}^{T} ||g_t||_{A^{-1}}^2$$

What if we minimize upper bound on regret w.r.t. A in hindsight?

$$\min_{A} \sum_{t=1}^{T} g_t^T A^{-1} g_t$$

Mahalanobis Regret Minimization

Objective:

$$\min_{A} \sum_{t=1}^{T} g_t^T A^{-1} g_t \qquad \text{subject to } A \succeq 0, \text{tr}(A) \leq C$$

Solution:

$$A = c \left(\sum_{t=1}^{T} g_t g_t^T \right)^{\frac{1}{2}}$$

For proof, see Appendix E, Lemma 15 of Duchi et al. 2011. Uses "trace trick" and Lagrangian.

A defines the norm of the metric space we should be operating in

AdaGrad Algorithm

At time t, estimate optimal (sub)gradient modification A by

$$A_t = \left(\sum_{\tau=1}^t g_{\tau} g_{\tau}^T\right)^{\frac{1}{2}}$$

• For d large, A_t is computationally intensive to compute. Instead,

$$A_{i,j}(A_{\epsilon}) = \begin{pmatrix} A_{i,j} \\ A_{i,j} \end{pmatrix} \begin{pmatrix} A$$

• Then, algorithm is a simple modification of normal updates:

$$\mathbf{w}^{(t+1)} = \arg\min_{\mathbf{w} \in \mathcal{W}} ||\mathbf{w} - (\mathbf{w}^{(t)} - \eta \operatorname{diag}(A_t)^{-1} g_t)||_{\operatorname{diag}(A_t)}^2$$

AdaGrad in Euclidean Space

• For $\mathcal{W}=\mathbb{R}^d$,

d'agonal

For each feature dimension,

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \eta_{t,i} g_{t,i}$$

where

$$\eta_{t,i} =$$

That is,

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \frac{\eta}{\sqrt{\sum_{\tau=1}^t g_{\tau,i}^2}} g_{t,i}$$

- Each feature dimension has it's own learning rate!
 - Adapts with t
 - Takes geometry of the past observations into account
 - Primary role of η is determining rate the first time a feature is encountered

AdaGrad Theoretical Guarantees

AdaGrad regret bound:

Grad regret bound:
$$R_{\infty} := \max_{t} ||\mathbf{w}^{(t)} - \mathbf{w}^*||_{\infty}$$

$$\sum_{t=1}^{T} \ell_t(\mathbf{w}^{(t)}) - \ell_t(\mathbf{w}^*) \leq 2R_{\infty} \sum_{i=1}^{d} ||g_{1:T,i}||_2$$

– In stochastic setting:

$$\mathbb{E}\left[\ell\left(\frac{1}{T}\sum_{t=1}^{T}w^{(t)}\right)\right] - \ell(\mathbf{w}^*) \le \frac{2R_{\infty}}{T}\sum_{i=1}^{d}\mathbb{E}[||g_{1:T,j}||_2]$$

with diag scaling

- This is used in practice.
- Many cool examples. Let's just examine one...

AdaGrad Theoretical Example

- Expect to out-perform when gradient vectors are sparse
- SVM hinge loss example:

$$\ell_t(\mathbf{w}) = [1 - y^t \langle \mathbf{x}^t, \mathbf{w} \rangle]_+$$
$$\mathbf{x}^t \in \{-1, 0, 1\}^d$$

• If $x_i^t \neq 0$ with probability $\propto j^{-\alpha}$, $\alpha > 1$

$$\mathbb{E}\left[\ell\left(\frac{1}{T}\sum_{t=1}^{T}\mathbf{w}^{(t)}\right)\right] - \ell(\mathbf{w}^*) = \mathcal{O}\left(\frac{||\mathbf{w}^*||_{\infty}}{\sqrt{T}} \cdot \max\{\log d, d^{1-\alpha/2}\}\right)$$

(sort of) previously bound:

$$\mathbb{E}\left[\ell\left(\frac{1}{T}\sum_{t=1}^{T}\mathbf{w}^{(t)}\right)\right] - \ell(\mathbf{w}^*) = \mathcal{O}\left(\frac{||\mathbf{w}^*||_{\infty}}{\sqrt{T}}\cdot\sqrt{d}\right)$$

Neural Network Learning

Very non-convex problem, but use SGD methods anyway

$$\ell(w,x) = \log(1 + \exp(\langle [p(\langle w_1, x_1 \rangle) \cdots p(\langle w_k, x_k \rangle)], x_0 \rangle))$$

 $p(\alpha) = \frac{1}{1 + \exp(\alpha)}$ $p(\langle w_1, x_1 \rangle)$ x_3 x_2 x_4

Distributed, $d = 1.7 \cdot 10^9$ parameters. SGD and AdaGrad use 80 machines (1000 cores), L-BFGS uses 800 (10000 cores)

Images from Duchi et al. ISMP 2012 slides

ADAM

- Like AdaGrad but with "forgetting"
- The algo has component-wise updates

Adam update rule consists of the following steps

- Compute gradient g_t at current time t
- Update biased first moment estimate

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

Update biased second raw moment estimate

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Compute bias-corrected first moment estimate

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}$$

Compute bias-corrected second raw moment estimate

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

• Update parameters

$$\theta_t = \theta_{t-1} - \alpha \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$$

Comparisons: MNIST, Sigmoid 100 layer

Comparisons: MNIST, Tanh 100 layer 0.966 Color momentum [0.125] adam [0.001] 0.964 adadelta [0.95] adagrad [0.05] sqd [1.0] 0.962

test set accuracy

0.960

momentum [0.125]

adam [0.001]

method name Sham Kakade 2017

adagrad [0.05]

sgd [1.0]

adadelta [0.95]

Comparisons: Sigmoid, ReLu, Sigmoid

Acknolwedgments

 Some figs taken from: http://int8.io/comparison-ofoptimization-techniques-stochastic-gradient-descentmomentum-adagrad-and-adadelta/