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Announcements:

* HW3 posted

— Dual coordinate ascent
— (some review of SGD and random features)

* Today:
— Review: tradeoffs in large scale learning
— Today: adaptive gradient methods



Review

Tradeoffs in Large Scale Learning.

S. M. Kakade (UW) Optimization for Big data
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Tradeoffs in Large Scale Learning.

Many issues sources of “error”
approximation error: our choice of a hypothesis class
estimation error: we only have n samples

optimization error: computing exact (or near-exact) minimizers can
be costly.

How do we think about these issues?
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The true objective

@ hypothesismap x € Xtoy € ).

@ have ntraining examples (x1, Y1), ... (Xn, ¥n) sSampled i.i.d. from D.

@ Training objective: have a set of parametric predictors
{h(x,w): we W},

A A 1 <
vg;i)l;lv L,(w) where Ly(w) = p ; loss(h(x;, w), yi)

@ True objective: to generalize to D,

min L(w) where L(w) = Ex y)ploss(h(X, w), Y)
wew ’

Optimization: Can we obtain linear time algorithms to find an
e-accurate solution? i.e. find h so that

L(w) — vl;rél)l;]v L(w) <e

S. M. Kakade (UW) Optimization for Big data



@ Let h* is the Bayes optimal hypothesis, over all functions from
X — ).
h* € argmin,L(h)

@ Let w* is the best in class hypothesis

w* € argmin, ., L(W)
@ Let w, be the empirical risk minimizer:

W € argminwewzn(w)

@ Let w, be what our algorithm returns.

S. M. Kakade (UW) Optimization for Big data




Loss decomposition

@ Observe:

L(wp)— L(h")= L(w*)—L(h*) Approximation error
+ L(wp) — L(w*) Estimation error
+ L(wp) — L(wp)  Optimization error

@ Three parts which determine our performance.

@ Optimization algorithms with “best” accuracy dependencies on L,
may not be best.

Forcing one error to decrease much faster may be wasteful.
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Best Iin class error

@ Fix a class V. What is the best estimator of w* for this model?

@ For a wide class of models (linear regression, logistic regression,
etc), the ERM, wy, is (in the limit) the best estimator:

Wp € argmin,, Lo(w)

@ What is the generalization error of best estimator w,?
@ How well can we do? Note:

L(wp) — L(w*)= +L(wp)— L(w*) Estimation error
+ L(wp) — L(wp)  Optimization error

@ Can we generalize as well as the sample minimizer, w,?
(without computing it exactly)
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Statistical Optimality

@ Can generalize as well as the sample minimizer, w,?
(without computing it exactly)

@ For a wide class of models (linear regression, logistic regression,
etc), we have that the estimation error is:

2

E[L(wy)] — L(w*) n—oo O;pt

where agpt is an (optimal) problem dependent constant.

@ This is the best possible statistical rate.
(Can quantify the non-asymptotic “burn-in”).

@ What is the computational cost of achieving exactly this rate? say for
large n?

S. M. Kakade (UW) Optimization for Big data




Averaged SGD

@ SGD:

Wiy <— W — ntVIOSS(h(Xv Wt)ay)

@ An (asymptotically) optimal algo:
e Have 7n; go to 0 (sufficiently slowly)
e (iterate averaging) Maintain the a running average:

Wn:%zwt

t<n

e (Polyak & Juditsky, 1992) for large enough n and with one pass of SGD

over the dataset: ,

E[L(Wp)] — L(w*) "= 22

S. M. Kakade (UW) Optimization for Big data
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The Problem with GD (and SGD)
/

o (6, )
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Adaptive Gradient Methods: Convex Case

Whafx\?ve want?
Newton’s method: /
w 4w — [V*L(w)] 'V L(w)

Why is this a good idea? o O ~o
— Guarantees?

— i707? ~
Stepsize: ~ = 1 =

a/é(/ S
6(77/\};"' Gt tﬁ

@ [0? /@

—ﬁ—"

Related ideas:

— Conjugate Gradient/Acceleration:
— L-BFGS
— Quasi-Newton methods
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Adaptive Gradient I\/Iethodfz N/gn-#g\()/Z&Case

\ﬂ\e 5{9%
 What do we want? N T ”LM VZ/“/>

— Hessian may not be PSD, so is Newtﬁ's method a descent method?

. A Mos #SD

e Other ideas: = Z/&J) w[/

— Natural Gradient me@ noot (A SO g

(dorn- smﬂ,t///%

— Curvature-adaptive:
* (Adagrad, AdaDelta, RMS prop, ADAM, I-BFGS, heavy ball gradient, momentum

— Noiseinjection:
* Simulated annealing, dropout, Langevin methods

e (Caveats:

— Batch methods may be poor: “On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima”
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Natural Gradient Idea

Probabilistic models and maximum likelihood estimation:
L(w) = —log Pr(data|w)

True likelihood function: —
where z is sampled form rling data distribution D. {) (z /(UX)
D =V

Suppose the model is correct, i.e. z~ Pr(z|w™) for some w*

— Let’s look at the Hessian at w™

V2L<’UJ*) = EzNPr(z|w*)[_v2IOgPr(Z‘w*)]
= E.pa(zju) [V log Pr(z|w*)(V log Pr(z|w*)) ]

How do we approximate the Hessian at w?






Fisher Information Matrix
DT Lle) FEF)

Define the Fisher matrix:

F(w) = E, przjw)|[VIlogPr(zlw)(Vlog Pr(z\w))T]

If the model is correct and if w —> w*, then F(w) = F(w") . //\
L
Natural Gradient: Use the update rule: L/ é b \

w4 w — [F(w)] ' VL(w) — F/&/%

Empirically, use LA(w) and

Fw) = =3 g(w)g(w)’

where g_t(w) is the gradient of the log likelihood of the t-th data point

©Sham Kakade 2017 17



Curvature approximation:

* Oneidea:
2 v 1 T
ViL(w) =~ - Z gt(w)ge(w)
14 S
where g_t(w) is the gradient of the t-th data point

* Many ideas try to use this approximation % § /)
— Quasi-Newton methods, Gauss newton methods ’
— Ellipsoid method (sort of)



M Otlvatl ng Ad a G ra d (Duchi, Hazan, Singer 2011)

Assuming W & Ra,l standard stochastic (sub)gradient descent
updates are of the form:

WD

ST W, — MGt
Should all features share the same learning rate?

C o= //ﬁ/\/ %Q< fou . Sy e cﬁZ;<

/-e%/‘ \
Motivating AdaGrad (Duchi, Hazan, Singer 2011): T
Often have high-dimensional feature spaces P l ;
. >
— Many features are irrelevant S >

— Rare features are often very informative

Adagrad provides a feature-specific adaptive learning rate by incorporating
knowledge of the geometry of past observations



Why Adapt to Geometry?

Lt.3

(\V)

e —— 11]-5

Examples from
Duchi et al.
ISMP 2012

slides

o|—xooon—\oo;§
OO OO0 O

0
D
-1 1
-1
-.5

® Frequent, irrelevant

® Infrequent, predictive
(3)
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Not All Features are Created Equal

 Examples:

High-dimensional image features
Text data:

The most unsung birthday
in American business and
technological history
this year may be the 50th
anniversary of the Xerox
914 photocopier.?

?The Atlantic, July/August 2010.

Images from Duchi et al. ISMP 2012 slides
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Visualizing Effect
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Regret Minimization /- <.
5974? Lﬁ;

/l
How do we assess the performance of an online algorithm? ;’

Algorithm iteratively predicts w(t)
Incur loss ft(w(t))

Regret:.
What is the total incurred loss of algorithm relative to the best choice
of W that could have been made retrospectively

wEe WY

7

b, >

R(T) =) Ly(w")— inf > f(w)



Regret Bounds for Standard SGD

 Standard prgjﬁed gradient stochastic updates:

w(tH) = arg min [lw — (w( —ng,)]

e Standard regret bound: /(‘///os C ?«J -

(MN\_ N

1
> aw®) — fuw) < o flw — w3+ "Zugtug

=11 3 Al
A = O(c;) Q(?}\ +%7>
leget = 0 () Lot o L =0

~ -
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Projected Gradient usm% I\/Iahalanobls
/ﬂ = \(MX

wttD) — al“ngvl’él)I/lv w — (W' —ng,)|[3

* What if instead of an £, metric for prOJectlon we cons
Mahalanobis norm " -1

e Standard projected gradient stochastic updates:

£ ’44 %%

wltth) — argvffg)r}v lw — (W' — A" g,)|I5
)
e
\
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Mahalanobis Regret Bounds

wl ) = arg VE%% lw — (w —nA~tg)||3

e What A to choose?
* Regret bound now:

 What if we minimize upper bound on regeet w.r.t. A in hyy,g/\./
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I\/Iahalanobls I? fret Minimization
|
e )4

: T -1 :
§ A - <
min d g; o subject to A > 0,tr(A) < C

* Objective:

e Solution:

T
A=c|) qgl
t=1

For proof, see Appendix E, Lemma 15 of Duchi et al. 2011.
Uses “trace trick” and Lagrangian.

N~

A defines the norm of the metric space we should be operating in



AdaGrad Algorithm

« Attimet, estimate optimal (sub)gradient modification A by

t
At — (Z gTQZ)
T=1

* Fordlarge, A;is computi)tionally intensive to compute. Instead,

AN Vg
/fxﬂ}Mé)— ( 5 4/.4} @%Jg( O;%

 Then, algorithm is a simple modification of normal updates:

2

(t+1) _ ' — (W — pdi “lgnllg
w1 = arg min |lw — (w'*) — ndiag(A1) ™ 90) 3100 4,
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AdaGrad in Euclidean Space
For )W = RY, \\ L\/% V//ch?av—\%(

For each feature dimension, TSP ONG
41 [ —
w ™ w — g,
where
Tt.i —
That is, (t41) (t) "
t+ t
w; —w; "t — gt.i

\/2332193¢

Each feature dimension has it’s own learning rate!
— Adapts with t

— Takes geometry of the past observations into account
— Primary role of n is determining rate the first time a feature is encountered



 AdaGrad regret bound:

AdaGrad Theoretical Guarantees

Roo := max ||[w() — w*||o

o~ d

T
th(w(t)) — U (w™) < 2R Z g1.7.4|2
t=1

1=1

— In stochastic setting:

E ( Zw(t)> — QROOZEHngJH
( ca/
R

—_

 Thisis used in practice.

* Many cool examples. Let’s just examine one...



AdaGrad Theoretical Example

Expect to out-perform when gradient vectors are sparse

SVM hinge loss example:

b(w) = [1 —y" (x",w)]4

x' € {~1,0,1}¢
If x;f # 0 with probability o< j~%, a>1

T
1 [W* ]| _

E [/ = w® || —o(w* :(9< . max{log d, d* /2 >
(72m) e =0 (B o :
(sort of) previously bound: E (¢ <l iw“)” —Uw*) =0 (HW = \/&>

T& %




Neural Network Learning

* Very non-convex problem, but use SGD methods anyway

t(w, x) = log(1 + exp(([p({w1, 1)) - - -Tp(<wk, k)], 0)))
1

1 + exp(a

2. " ddd
i ngEESE; ggg w/Adagrad @ @

Sandblgster L—BEGS T T T T T

0 2‘0 4‘0 6‘0 80 100 120
Time (hours) L1 X2 X3 T4 T

(Dean et al. 2012)

Distributed, d = 1.7 - 10° parameters. SGD and AdaGrad use 80 Images from Duchi et

machines (1000 cores), L-BFGS uses 800 (10000 cores) al. ISMP 2012 slides
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A DA M Adam update rule consists of the following steps

Compute gradient g; at current time ¢
Update biased first moment estimate

e Like AdaGrad but
with “forgetting” m; = Byme_y + (1= B1)g;

 The algo has
component-wise
updates Ve = Paveet + (1-Po)gt

Update biased second raw moment estimate

e Compute bias-corrected first moment estimate

2l
g o= 1_ﬂi
e Compute bias-corrected second raw moment estimate
e
Vs = i ﬂ%
e Update parameters
0, =0,1-a——"



Comparisons: MNIST, Sigmoid 100 layer

test set accuracy

0.971
0.970

0.969 Color

® momentum [0.125]
W adam [0.001]

W adadelta [0.9]

W adagrad [0.075]

“sgd [0.5]
0.968

0.967

0.966 -

momentum [0, 125] adam [0.001] @ﬁgMKQJde 201 7dagrad [0.075] sad [0.5]

method name




test set accuracy

comparisons: MNIST, Tanh 100 layer

0.966

Color

™ momentum [0.125]
" adam [0.001]
0.964 W adadelta [0.95]
W adagrad [0.05]
sad [1.0]
0.962 .
0.960 . e

momentum [0.125] adam [0.001] adadelta [0.95] adagrad [0.05] sad [1.0]

Behod DAME 2017




Comparisons: Sigmoid, RelLu, Sigmoid

test set accuracy

0.982

0.980
Color
® momentum [0.2]
¥ adam [0.002]

0.978 W adadelta [0.975]
W adagrad [0.05]
“ sad [1.0]

0.976

0.974 -

momentum [0.2] adam [0.002] adadelta [0.975] adagrad [0.05] sad [1.0]

ofnsthed nams, 7
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