Machine Learning for Big Data (CSE 547 / STAT 548)

(...what is “big data” anyways?)
Course Staff

Instructor:
• Sham Kakade

Two Great TAs: (interact with them. learn.)
• Aravind Rajeswaran
• Yali Wan
CONTENT

What is the course about?
Course Structure

• Some “case studies”
 – Estimating Click Probabilities
 – Document Retrieval
 – fMRI Prediction
 – Collaborative Filtering
 – ??

• Not comprehensive, but a sample of tasks and associated solution methods

• Methods broadly applicable beyond these case studies
1. Estimating Click Probabilities

- **Goal**: Predict whether a person clicks on an ad
- **Basic method**: logistic regression, online learning
1. Estimating Click Probabilities

- **Challenge I:** Overfitting, high-dimensional feature space
- **Advanced method:** L2 regularization, hashing
1. Estimating Click Probabilities

• **Challenge II:** Dimension of feature space changes
 – New word, new user attribute, etc.

• **Advanced method:** sketching, hashing
2. Document Retrieval

- **Goal:** Retrieve documents of interest
- **Methods:** fast K-NN, k-means, mixture models, Hadoop
3. fMRI Prediction

- **Goal:** Predict word probability from fMRI image
- **Challenge:** $p >> n$ (feature dimension $>>$ sample size)
- **Methods:** L1 regularization (LASSO), parallel learning
3. fMRI Prediction

- **Goal:** Predict fMRI image for given stimulus
- **Challenge:** zero shot learning (generalization)
- **Methods:** features of words, Mechanical Turk, graphical LASSO
4. Collaborative Filtering

- **Goal:** Find movies of interest to a user based on movies watched by the user and others
- **Methods:** matrix factorization, latent factor models, GraphLab
What do I recommend???

- Women on the Verge of a Nervous Breakdown
- The Celebration
- City of God
- Wild Strawberries
- La Dolce Vita
4. Collaborative Filtering

- **Challenge:** Cold-start problem (new movie or user)
- **Methods:** use features of movie/user
Scalability

• Throughout case studies, introduce notions of parallel learning and distributed computations
Assumed Background

Official Prereq (strict): CSE 546 or STAT 535

Know specific topics:
• Linear and logistic regression, ridge regression, LASSO
• Basic optimization (e.g., gradient descent, SGD)
• Perceptron algorithm
• K-NN, k-means, EM algorithm

Comfortable with:
• Java or Python
• Ability to learn programming languages (TensorFlow?)
• Probabilistic and statistical reasoning
• Linear Algebra

Computational and mathematical maturity
LOGISTICS

How is the course going to operate?
Diversity/Gender Issues

- An acknowledgement: there are diversity/gender issues to overcome.
 – Please be mindful of this.
Website and Catalyst

• Course website: courses.cs.washington.edu/courses/cse547/17sp/index.html

• Canvas:
 – Used for all discussions!!
 – Post all questions there (unless personal)
 – Homework collection
 – Personal: cse547-instructors@cs.washington.edu
Reading

• Required textbook:
 “Machine Learning: A Probabilistic Perspective”
 Kevin P. Murphy

• Also, readings will be from papers linked to on course website

• Please do reading before lecture on topic
Homework

- 4 HWs, approx one for each case study
- Collaboration allowed, but write-ups and coding must be done individually
- You must submit your code.
- Due on posted date/time.
- Late: (up to) 1 day late 33%, (up to) 2 day late 66%, etc
- If you plan to be late, DO NOT TAKE THE COURSE.
- YOU MUST SUBMIT ALL HW TO PASS THE COURSE (EVEN IT IS FOR 0 CREDIT)
Project

• Individual, or teams of two
• New work, but can be connected to research
• Schedule: SEE WEBSITE FOR CHANGES TO DATES
 – Proposal (1 page) – April 7
 – Progress report /Milestone (3 pages) – May 5
 – Poster presentation –
 Thursday, June 1, 9:00-11:30am (YOU MUST MAKE THIS)
 – Final report (8 pages, NIPS format) – June 6
Grading

• HWs 1, 2, 3, 4 (15% each)
• Final project (40%)

• GRADING QUESTIONS: All regrading/policy change questions must be requested by email at cse547-instructors@cs.washington.edu. All in personal discussions (for TAs/instructors) are limited to knowledge based questions. Regrading may result in any part of the HW set going up or down.
Support/Resources

- Office Hours
 - TBD
- Discussion Board
Conclusion

• It will be hard work and fun...
• ML is having tremendous impact in technology/society.

– What about social impact?
– And social good?