Case Study 4: Collaborative Filtering

Probabilistic Matrix Factorization
Matrix Completion and Local Minima
Cold-Start vs. Overfitting vs. Consistency?

• Suppose a user u has k ratings and there is noise (i.e. you observe the true matrix + noise).

 – How do we estimate L_u?

 – Suppose the number of people goes to infinity, can we estimate the R_v’s consistently?
 • Using ALS?

 Not consistent
 • Instead:

 $$X = LR$$
 $$\frac{1}{n} X^T X = R M R^T$$

 ©Sham Kakade 2016
Probabilistic Matrix Factorization (PMF)

- A generative process:
 - Pick user \(u \) factors
 \[L_u = (L_{u1} \ldots L_{uk}) \]
 - Pick movie \(v \) factors
 \[R_v = (R_{v1} \ldots R_{vk}) \]
 - For each (user,movie) pair observed:
 - Pick rating as \(L_u \cdot R_v + \text{noise} \)
 \[\text{If } x_{uv} \text{ is observed: } x_{uv} \sim N(0, \sigma^2) \]
 \[x_{uv} \sim N(L_u \cdot R_v, \sigma^2) \]
 \[x_{uv} \sim N(L_u \cdot R_v, \sigma^2) \]
 - Joint probability:
 \[P(L, R, X) = P(L)P(R)P(X|LR) \]
PMF Graphical Model

\[P(L, R \mid X) \propto P(L)P(R)P(X \mid L, R) \]

- Graphically:
Maximum A Posteriori for Matrix Completion

\[P(L, R|X) \propto P(L, R, X) = p(L)p(R)p(X | L, R) \]

\[\propto e^{-\frac{1}{2\sigma_u^2} \sum_{u=1}^{n} \sum_{i=1}^{k} L_{ui}^2} e^{-\frac{1}{2\sigma_v^2} \sum_{v=1}^{m} \sum_{i=1}^{k} R_{vi}^2} e^{-\frac{1}{2\sigma_r^2} \sum_{r_{uv}} (L_{ui} \cdot R_{vi} - r_{uv})^2} \]

\[\max_{L, R} \mathbb{E}(L, R | X) \]

\[L, R \]

\[= \frac{1}{2\sigma_u^2} \sum_{u=1}^{n} \sum_{i=1}^{k} L_{ui}^2 + \frac{1}{2\sigma_v^2} \sum_{v=1}^{m} \sum_{i=1}^{k} R_{vi}^2 + \frac{1}{2\sigma_r^2} \sum_{r_{uv}} (L_{ui} \cdot R_{vi} - r_{uv})^2 \]

\[\min_{L, R} \frac{1}{2} \|L\|^2_F + \frac{\lambda}{2} \|R\|^2_F + \frac{1}{2} \sum_{r_{uv}} (L_{ui} \cdot R_{vi} - r_{uv})^2 \]

©Sham Kakade 2016
MAP versus Regularized Least-Squares for Matrix Completion

- MAP under Gaussian Model:

\[
\max_{L,R} \log P(L, R | X) =
\]

\[
- \frac{1}{2\sigma_u^2} \sum_u \sum_i L_{ui}^2 - \frac{1}{2\sigma_v^2} \sum_v \sum_i R_{vi}^2 - \frac{1}{2\sigma_r^2} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \text{const}
\]

- Least-squares matrix completion with L_2 regularization:

\[
\min_{L,R} \frac{1}{2} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \frac{\lambda_u}{2} \|L\|_F^2 + \frac{\lambda_v}{2} \|R\|_F^2
\]

- Understanding as a probabilistic model is very useful! E.g.,
 - Change priors

 \[
 \text{prior}
 \]

 \[
 \text{user spec. info.}
 \]
 - Incorporate other sources of information or dependencies
What you need to know...

• Probabilistic model for collaborative filtering
 – Models, choice of priors
 – MAP equivalent to optimization for matrix completion

©Sham Kakade 2016
Case Study 4: Collaborative Filtering

Gibbs Sampling for Bayesian Inference
MAP estimation focuses on point estimation:

\[\hat{\theta}^{MAP} = \arg \max_{\theta} p(\theta | x) \]

What if we want a full characterization of the posterior?

- Maintain a measure of uncertainty
- Estimators other than posterior mode (different loss functions)
- Predictive distributions for future observations

Often no closed-form characterization (e.g., mixture models, PMF, etc.)
Bayesian PMF Example

- Latent user and movie factors:

- Observations

- Hyperparameters:

- Want to predict new movie rating:
Bayesian PMF vs. MAP PMF

\[p(r_{uv}^* \mid X, \phi) = \int p(r_{uv}^* \mid L_u, R_v)p(L, R \mid X, \phi)dLdR \]

- Relationship to MAP plug-in estimator:
Bayesian PMF Example

\[p(r_{uv}^* \mid X, \phi) = \int p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dLdR \]

- Monte Carlo methods:

- Ideally:
Bayesian PMF Example

- Want posterior samples \((L^{(k)}, R^{(k)}) \sim p(L, R \mid X, \phi)\)
- What can we sample from?
 - Hint: Same reasoning as behind ALS, but sampling rather than maximization
Bayesian PMF Example

- For user u:

\[p(L_u \mid X, R, \phi_u) \propto p(L_u \mid \phi_u) \prod_{v \in V_u} p(r_{uv} \mid L_u, R_v, \phi_r) \]

- Symmetrically for \(R_v \) conditioned on \(L \) (breaks down over movies)
- Luckily, we can use this to get our desired posterior samples
Gibb Sampling

- Want draws:
- Construct Markov chain whose steady state distribution is
- Then, asymptotically correct
- Simplest case:
Bayesian PMF Gibbs Sampler

Outline of Bayesian PMF sampler
Bayesian PMF Results

Netflix data with:

- Training set = 100,480,507 ratings from 480,189 users on 17,770 movie titles
- Validation set = 1,408,395 ratings.
- Test set = 2,817,131 user/movie pairs with the ratings withheld.

Figure 2. Left panel: Performance of SVD, PMF, logistic PMF, and Bayesian PMF using 30D feature vectors, on the Netflix validation data. The y-axis displays RMSE (root mean squared error), and the x-axis shows the number of epochs, or passes, through the entire training set. Right panel: RMSE for the Bayesian PMF models on the validation set as a function of the number of samples generated. The two curves are for the models with 30D and 60D feature vectors.
Bayesian PMF Results

From Salakhutdinov and Mnih, ICML 2008

Bayesian model better controls for overfitting by averaging over possible parameters (instead of committing to one)

<table>
<thead>
<tr>
<th>D</th>
<th>Valid. RMSE</th>
<th>% Inc.</th>
<th>Test RMSE</th>
<th>% Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PMF</td>
<td>BPMF</td>
<td></td>
<td>PMF</td>
</tr>
<tr>
<td>30</td>
<td>0.9154</td>
<td>0.8994</td>
<td>1.74</td>
<td>0.9188</td>
</tr>
<tr>
<td>40</td>
<td>0.9135</td>
<td>0.8968</td>
<td>1.83</td>
<td>0.9170</td>
</tr>
<tr>
<td>60</td>
<td>0.9150</td>
<td>0.8954</td>
<td>2.14</td>
<td>0.9185</td>
</tr>
<tr>
<td>150</td>
<td>0.9178</td>
<td>0.8931</td>
<td>2.69</td>
<td>0.9211</td>
</tr>
<tr>
<td>300</td>
<td>0.9231</td>
<td>0.8920</td>
<td>3.37</td>
<td>0.9265</td>
</tr>
</tbody>
</table>

Table 1. Performance of Bayesian PMF (BPMF) and linear PMF on Netflix validation and test sets.

©Sham Kakade 2016
Bayesian PMF Gibbs Sampler

Outline of Bayesian PMF sampler

1. Initialize $L^{(1)}$, $R^{(1)}$

2. For $k = 1, \ldots, N_{iter}$

 (i) Sample hyperparams $\phi^{(k)}$

 (ii) For each user $u = 1, \ldots, n$ sample (in parallel)
 $L_u^{(k+1)} \sim N(\tilde{\mu}_u, \tilde{\Sigma}_u)$

 (iii) For each move $v = 1, \ldots, m$ sample (in parallel)
 $R_v^{(k+1)} \sim N(\tilde{\mu}_v, \tilde{\Sigma}_v)$

where \[
\tilde{\Sigma}_u^{-1} = \Sigma_u^{-1} + \sigma_r^{-2} \sum_{v \in V_u} R_v R_v^T
\]

\[
\tilde{\mu}_u = \tilde{\Sigma}_u \left(\sigma_r^{-2} \sum_{v \in V_u} r_{uv} R_v + \Sigma_u^{-1} \mu_u \right)
\]
What you need to know...

• Idea of full posterior inference vs. MAP estimation
• Gibbs sampling as an MCMC approach
• Example of inference in Bayesian probabilistic matrix factorization model
• Implementation of vanilla sampler in GraphLab
Case Study 4: Collaborative Filtering

Matrix Factorization and Probabilistic LFM for Network Modeling
Network Data

- Structure of network data
Properties of Data Source

- Similarities to Netflix data:
 - Matrix
 - High-dimensional
 - Sparse

- Differences
 - Square
 - Binary
Matrix Factorization for Network Data

- Vanilla matrix factorization approach:

- What to return for link prediction?

- Slightly fancier:
Algorithms
Probabilistic Latent Space Models

- Assume features (covariates) of the user or relationship
- Each user has a “position” in a k-dimensional latent space

- Probability of link:
Probabilistic Latent Space Models

- Probability of link:

\[\log \text{odds } p(r_{uv} = 1 \mid L_u, L_v, x_{uv}, \beta) = \beta_0 + \beta^T x_{uv} - |L_u - L_v| \]

\[\log \text{odds } p(r_{uv} = 1 \mid L_u, L_v, x_{uv}, \beta) = \beta_0 + \beta^T x_{uv} + |L_u^T L_v| \]

- Bayesian approach:
 - Place prior on user factors and regression coefficients
 - Place hyperprior on user factor hyperparameters

- Many other options and extensions (e.g., can use GMM for \(L_u \) → clustering of users in the latent space)
What you need to know...

• Representation of network data as a matrix
 – Adjacency matrix
• Similarities and differences between adjacency matrices and general matrix-valued data
• Matrix factorization approaches for network data
 – Just use standard MF and threshold output
 – Introduce link functions to constrain predicted values
• Probabilistic latent space models
 – Model link probabilities using distance between latent factors