Case Study 1: Estimating Click Probabilities

Intro
Logistic Regression
Gradient Descent + SGD

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Sham Kakade
March 29, 2016
Ad Placement Strategies

• Companies bid on ad prices

• Which ad wins? (many simplifications here)
 – Naively:
 – But:
 – Instead:
Key Task: Estimating Click Probabilities

• What is the probability that user i will click on ad j

• Not important just for ads:
 – Optimize search results
 – Suggest news articles
 – Recommend products

• Methods much more general, useful for:
 – Classification
 – Regression
 – Density estimation
Learning Problem for Click Prediction

• Prediction task:

• Features:

• Data:
 – Batch:
 – Online:

• Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision trees, boosting,...)
 – Focus on logistic regression; captures main concepts, ideas generalize to other approaches
Logistic Regression

- Learn \(P(Y|X) \) directly
 - Assume a particular functional form
 - Sigmoid applied to a linear function of the data:

\[
P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

Logistic function (or Sigmoid):

\[
\frac{1}{1 + \exp(-z)}
\]

Features can be discrete or continuous!
Very convenient!

\[P(Y = 0 \mid X = <X_1, \ldots, X_n>) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

implies

\[\ln \frac{P(Y = 1 \mid X)}{P(Y = 0 \mid X)} = w_0 + \sum_i w_i X_i \]
Digression: Logistic regression more generally

- Logistic regression in more general case, where Y in $\{y_1, \ldots, y_R\}$

 for $k<R$

 $$P(Y = y_k|X) = \frac{\exp(w_{k0} + \sum_{i=1}^{n} w_{ki}X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)}$$

 for $k=R$ (normalization, so no weights for this class)

 $$P(Y = y_R|X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)}$$

 Features can be discrete or continuous!
Loss function: Conditional Likelihood

• Have a bunch of iid data of the form:

• Discriminative (logistic regression) loss function:

\[\ln P(D_Y \mid D_X, w) = \sum_{j=1}^{N} \ln P(y^j \mid x^j, w) \]
Expressing Conditional Log Likelihood

\[l(w) \equiv \sum_j \ln P(y^j|x^j, w) \]

\[P(Y = 0|X, w) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

\[P(Y = 1|X, w) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

\[\ell(w) = \sum_j y^j \ln P(Y = 1|x^j, w) + (1 - y^j) \ln P(Y = 0|x^j, w) \]

\[= \sum_j y^j (w_0 + \sum_{i=1}^d w_i x_i^j) - \ln \left(1 + \exp(w_0 + \sum_{i=1}^d w_i x_i^j) \right) \]
Maximizing Conditional Log Likelihood

\[l(w) \equiv \ln \prod_j P(y^j|x^j, w) \]

\[= \sum_j y^j (w_0 + \sum_{i=1}^{d} w_i x_i^j) - \ln \left(1 + \exp(w_0 + \sum_{i=1}^{d} w_i x_i^j) \right) \]

Good news: \(l(w) \) is concave function of \(w \),
no local optima problems

Bad news: no closed-form solution to maximize \(l(w) \)

Good news: concave functions easy to optimize
Optimizing concave function – Gradient ascent

- Conditional likelihood for logistic regression is concave
- Find optimum with gradient ascent

\[\nabla_w l(w) = \left[\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_n} \right]' \]

Gradient:

Update rule:

\[\Delta w = \eta \nabla_w l(w) \]

\[w_i(t+1) \leftarrow w_i(t) + \eta \frac{\partial l(w)}{\partial w_i} \]

- Gradient ascent is simplest of optimization approaches
 - e.g., Conjugate gradient ascent much better (see reading)
Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < \varepsilon

\[w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y_j - \hat{P}(Y_j = 1 \mid x_j, w^{(t)})] \]

For \(i = 1, \ldots, d \),

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y_j - \hat{P}(Y_j = 1 \mid x_j, w^{(t)})] \]

repeat
Regularized Conditional Log Likelihood

• If data are linearly separable, weights go to infinity
• Leads to overfitting \rightarrow Penalize large weights

• Add regularization penalty, e.g., L_2:

$$
\ell(w) = \ln \prod_j P(y^j | x^j, w) - \frac{\lambda}{2} \|w\|_2^2
$$

• Practical note about w_0:
Standard v. Regularized Updates

• Maximum conditional likelihood estimate

\[
\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left(\prod_{j=1}^{N} P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right)
\]

\[
\mathbf{w}_i^{(t+1)} \leftarrow \mathbf{w}_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}_{(t)}^j \mathbf{w})]
\]

• Regularized maximum conditional likelihood estimate

\[
\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left(\prod_j P(y^j | \mathbf{x}^j, \mathbf{w}) \right) - \frac{\lambda}{2} \sum_{i>0} w_i^2
\]

\[
\mathbf{w}_i^{(t+1)} \leftarrow \mathbf{w}_i^{(t)} + \eta \left\{ -\lambda \mathbf{w}_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}_i^j \mathbf{w})] \right\}
\]
Stopping criterion

\[\ell(w) = \ln \prod_j P(y^j | x^j, w) - \frac{\lambda \| w \|^2}{2} \]

- Regularized logistic regression is strongly concave
 - Negative second derivative bounded away from zero:

- Strong concavity (convexity) is super helpful!!
- For example, for strongly concave \(l(w) \):

\[\ell(w^*) - \ell(w) \leq \frac{1}{2\lambda} \| \nabla \ell(w) \|^2 \]
Convergence rates for gradient descent/ascent

- Number of iterations to get to accuracy
 \[\ell(w^*) - \ell(w) \leq \epsilon \]

- If func \(l(w) \) Lipschitz: \(O(1/\epsilon^2) \)

- If gradient of func Lipschitz: \(O(1/\epsilon) \)

- If func is strongly convex: \(O(ln(1/\epsilon)) \)
Challenge 1: Complexity of computing gradients

- What’s the cost of a gradient update step for LR???

\[
\begin{align*}
 w_i^{(t+1)} &\leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j \left[y^j - \hat{P}(Y^j = 1 \mid x^j, w) \right] \right\}
\end{align*}
\]
Challenge 2: Data is streaming

• Assumption thus far: **Batch data**

• But, click prediction is a streaming data task:
 – User enters query, and ad must be selected:
 • Observe x^i, and must predict y^i

 – User either clicks or doesn’t click on ad:
 • Label y^i is revealed afterwards
 – Google gets a reward if user clicks on ad

 – Weights must be updated for next time:
Learning Problems as Expectations

• Minimizing loss in training data:
 – Given dataset:
 • Sampled iid from some distribution $p(x)$ on features:
 – Loss function, e.g., hinge loss, logistic loss,...
 – We often minimize loss in training data:

$$
\ell_D(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ell(\mathbf{w}, \mathbf{x}^j)
$$

• However, we should really minimize expected loss on all data:

$$
\ell(\mathbf{w}) = E_\mathbf{x} [\ell(\mathbf{w}, \mathbf{x})] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}
$$

• So, we are approximating the integral by the average on the training data
Gradient Ascent in Terms of Expectations

- "True" objective function:

\[\ell(w) = E_x [\ell(w, x)] = \int p(x) \ell(w, x) dx \]

- Taking the gradient:

- "True" gradient ascent rule:

- How do we estimate expected gradient?
SGD: Stochastic Gradient Ascent (or Descent)

- "True" gradient: \(\nabla \ell(w) = E_x [\nabla \ell(w, x)] \)

- Sample based approximation:

- What if we estimate gradient with just one sample???
 - Unbiased estimate of gradient
 - Very noisy!
 - Called stochastic gradient ascent (or descent)
 - Among many other names
 - VERY useful in practice!!!
Stochastic Gradient Ascent: General Case

• Given a stochastic function of parameters:
 – Want to find maximum

• Start from $w^{(0)}$
• Repeat until convergence:
 – Get a sample data point x^t

 – Update parameters:

• Works in the online learning setting!
• Complexity of each gradient step is constant in number of examples!
• In general, step size changes with iterations
Stochastic Gradient Ascent for Logistic Regression

• Logistic loss as a stochastic function:

\[E_x [\ell(w, x)] = E_x \left[\ln P(y|x, w) - \frac{\lambda}{2} \|w\|^2 \right] \]

• Batch gradient ascent updates:

\[
\begin{aligned}
 w_{i}(t+1) &\leftarrow w_{i}(t) + \eta \left\{ -\lambda w_{i}(t) + \frac{1}{N} \sum_{j=1}^{N} x_{i}(j) [y(j) - P(Y = 1|x^{(j)}, w^{(t)})] \right\} \\
\end{aligned}
\]

• Stochastic gradient ascent updates:

– Online setting:

\[
\begin{aligned}
 w_{i}(t+1) &\leftarrow w_{i}(t) + \eta_t \left\{ -\lambda w_{i}(t) + x_{i}(t) [y(t) - P(Y = 1|x^{(t)}, w^{(t)})] \right\} \\
\end{aligned}
\]
Convergence Rate of SGD

• **Theorem:**

 – (see Nemirovski et al ‘09 from readings)
 – Let f be a strongly convex stochastic function
 – Assume gradient of f is Lipschitz continuous and bounded

 – Then, for step sizes:

 – The expected loss decreases as $O(1/t)$:
Convergence Rates for Gradient Descent/Ascent vs. SGD

• Number of Iterations to get to accuracy

\[\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \leq \epsilon \]

• Gradient descent:
 – If func is strongly convex: \(O(\ln(1/\epsilon)) \) iterations

• Stochastic gradient descent:
 – If func is strongly convex: \(O(1/\epsilon) \) iterations

• Seems exponentially worse, but much more subtle:
 – Total running time, e.g., for logistic regression:
 • Gradient descent:
 • SGD:
 • SGD can win when we have a lot of data
 – See readings for more details
What you should know about Logistic Regression (LR) and Click Prediction

- Click prediction problem:
 - Estimate probability of clicking
 - Can be modeled as logistic regression
- Logistic regression model: Linear model
- Gradient ascent to optimize conditional likelihood
- Overfitting + regularization
- Regularized optimization
 - Convergence rates and stopping criterion
- Stochastic gradient ascent for large/streaming data
 - Convergence rates of SGD