Case Study 1: Estimating Click Probabilities

Intro
Logistic Regression
Gradient Descent + SGD

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Sham Kakade
March 29, 2016
Ad Placement Strategies

- Companies bid on ad prices
 \[c_1 = \$10 \quad c_3 = \$100 \quad c_2 = \$20 \]

- Which ad wins? (many simplifications here)
 - Naively:
 \[c_3 = \$100 \]
 - But:
 paid on clicks
 - Instead:
 \[\Pr(\text{click} | c_3) = 0.0 \]
 \[\Pr(\text{click} | c_2) = 0.5 \]
 \[\mathbb{E} [\$ \text{j}] = 0.1 \times 100 = \$1 \]
 \[\mathbb{E} [\$ \text{k}] = 0.5 \times 20 = \$10 \]
Key Task: Estimating Click Probabilities

• What is the probability that user i will click on ad j?

• Not important just for ads:
 – Optimize search results
 – Suggest news articles
 – Recommend products

• Methods much more general, useful for:
 – Classification
 – Regression
 – Density estimation
Learning Problem for Click Prediction

• Prediction task: \(\mathbf{x} \rightarrow \{0, 1\}, \text{Pr}(\text{click}=1 | \mathbf{x})\)

• Features:
 \[X = (\text{feats of page, ad, user, keyword})\]

• Data:
 \[(x_i, y_i)\]
 – Batch: fixed dataset \((x_1, y_1), \ldots, (x_N, y_N)\)
 – Online: data as stream \(\text{predict } y_t \text{ user arrives at time } t \text{ observe } Y_t\)

• Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision trees, boosting,…)
 – Focus on logistic regression; captures main concepts, ideas generalize to other approaches
Logistic Regression

- Learn $P(Y|X)$ directly
 - Assume a particular functional form
 - Sigmoid applied to a linear function of the data:

$$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$X \in \mathbb{R}^d$

$W \in \mathbb{R}^{d+1}$

Features can be discrete or continuous!
Very convenient!

\[P(Y = 0 \mid X = < X_1, \ldots, X_n >) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

implies

\[\ln \frac{P(Y = 1 \mid X)}{P(Y = 0 \mid X)} = w_0 + \sum_i w_i X_i \]

linear classification rule!

- \(\log \) odds
 - predict > 0
 - predict < 0
Digression: Logistic regression more generally

- Logistic regression in more general case, where Y in $\{y_1, ..., y_R\}$ for $k < R$

$$P(Y = y_k|X) = \frac{\exp(w_{k0} + \sum_{i=1}^{n} w_{ki}X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)}$$

for $k = R$ (normalization, so no weights for this class)

$$P(Y = y_R|X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)}$$

Features can be discrete or continuous!
Loss function: Conditional Likelihood

• Have a bunch of iid data of the form:

\[(x^i, y^i) \]

\[i = 1, \ldots, n \]

\[D = (D_x, D_y) \]

• Discriminative (logistic regression) loss function:

Conditional Data Likelihood

\[\arg \max_{\omega} P_r(D_y | D_x, \omega) = \arg \max_{\omega} \frac{N}{\prod_{i=1}^{N} P_r(y^i | x^i, \omega)} \]

\[= \arg \max_{\omega} \ln \frac{1}{\prod_{i=1}^{N} P_r(y^i | x^i, \omega)} \]

\[\ln P(D_y | D_x, \omega) = \sum_{j=1}^{N} \ln P(y^j | x^j, \omega) \]
Expressing Conditional Log Likelihood

\[l(w) \equiv \sum_j \ln P(y^j|x^j, w) \]

\[= \sum_j \begin{cases} \ln P(y = 1|x^j, w) & y_j = 1 \\ \ln P(y = 0|x^j, w) & y_j = 0 \end{cases} \]

\[\ell(w) = \sum_j y^j \ln P(Y = 1|x^j, w) + (1 - y^j) \ln P(Y = 0|x^j, w) \]

\[= \sum_j y^j (w_0 + \sum_{i=1}^d w_i x_i^j) - \ln \left(1 + \exp(w_0 + \sum_{i=1}^d w_i x_i^j) \right) \]

for ℓ_n
Maximizing Conditional Log Likelihood

\[l(w) \equiv \ln \prod_j P(y^j|x^j, w) \]

\[= \sum_j y^j (w_0 + \sum_{i=1}^d w_i x_{ij}) - \ln \left(1 + \exp(w_0 + \sum_{i=1}^d w_i x_{ij}) \right) \]

Good news: \(l(w) \) is concave function of \(w \), no local optima problems

Bad news: no closed-form solution to maximize \(l(w) \)

Good news: concave functions easy to optimize using iterative method
Optimizing concave function — Gradient ascent

- Conditional likelihood for logistic regression is \textit{concave}
- Find optimum with \textit{gradient ascent}

\begin{align*}
\text{Gradient:} \quad \nabla_w l(w) &= \left[\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_n} \right]'
\end{align*}

\begin{align*}
\text{Update rule:} \quad \Delta w &= \eta \nabla_w l(w) \\
w_i(t+1) &\leftarrow w_i(t) + \eta \frac{\partial l(w)}{\partial w_i}
\end{align*}

- Gradient ascent is simplest of optimization approaches
 - e.g., Conjugate gradient ascent much better (see reading)
Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ε

For $i = 1, \ldots, d$,

$w^{(t+1)}_i = w^{(t)}_i + \eta \sum_j x^j_i [y^j - \hat{P}(Y^j = 1 \mid x^j, w^{(t)})]$
Regularized Conditional Log Likelihood

- If data are linearly separable, weights go to infinity
- Leads to overfitting \(\rightarrow \) Penalize large weights

- Add regularization penalty, e.g., L2:

\[
\ell(w) = \ln \prod_j P(y^j | x^j, w) - \frac{\lambda ||w||_2^2}{2}
\]

- Practical note about \(w_0 \):

 don't regularize \(w_0 \)
 (redefine \(w \))
Standard v. Regularized Updates

- **Maximum conditional likelihood estimate**

\[
 w^* = \arg \max_w \ln \left[\prod_{j=1}^{N} P(y^j | x^j, w) \right]
\]

\[
 w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 | x^{(t)}_i w)]
\]

- **Regularized maximum conditional likelihood estimate**

\[
 w^* = \arg \max_w \ln \left[\prod_{j} P(y^j|x^j, w) \right] - \frac{\lambda}{2} \sum_{i>0} w_i^2
\]

\[
 w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 | x^j, w)] \right\}
\]
Stopping criterion

\[\ell(w) = \ln \prod_{j} P(y^j | x^j, w) - \frac{\lambda}{2} \|w\|_2^2 \]

- Regularized logistic regression is strongly concave
 - Negative second derivative bounded away from zero:
 \[-f''(x) \geq 0 \]
 - Strong concavity (convexity) is super helpful!!
- For example, for strongly concave \(l(w) \):
 \[l(w^*) - l(w) \leq \frac{1}{2\lambda} \|\nabla l(w)\|_2^2 \]
 \[\|\nabla l(w^t)\|_2 \leq 2 \times \epsilon \] stops.
Convergence rates for gradient descent/ascent

- Number of iterations to get to accuracy
 \[l(w^*) - l(w) \leq \epsilon \]
- If \(f(w) \) Lipschitz: \(O(1/\epsilon^2) \)
 \[\| l(u) - l(v) \| \leq \| u - v \| \]
- If gradient of \(f(w) \) Lipschitz: \(O(1/\epsilon) \)
- If \(f(w) \) is strongly convex: \(O(\ln(1/\epsilon)) \)
 \(\text{exp. fewer iterations} \)
Challenge 1: Complexity of computing gradients

- What's the cost of a gradient update step for LR???

\[
\begin{align*}
 w_i^{(t+1)} &\leftarrow w_i^{(t)} + \eta \left(-\lambda w_i^{(t)} + \sum_j x_j^i [y_j - \hat{P}(Y_j = 1 | x_j, w)] \right) \\
\end{align*}
\]

- $O(Nd)$ for this update.
- Naively, $O(Nd^2)$ for all features.
- With "caching" $\hat{y}_j (\approx x_j^i (y_j - \hat{P}(y_j = 1 | x_j, w)))$.
- If N is large, $O(Nd)$ is significant data.
Challenge 2: Data is streaming

- Assumption thus far: **Batch data**

- But, click prediction is a streaming data task:
 - User enters query, and ad must be selected:
 - Observe x^i, and must predict y^i
 - User either clicks or doesn’t click on ad:
 - Label y^i is revealed afterwards
 - Google gets a reward if user clicks on ad
 - Weights must be updated for next time:
Learning Problems as Expectations

• Minimizing loss in training data:
 – Given dataset:
 • Sampled iid from some distribution $p(x)$ on features:
 – Loss function, e.g., hinge loss, logistic loss,...
 – We often minimize loss in training data:
 \[
 \ell_D(w) = \frac{1}{N} \sum_{j=1}^{N} \ell(w, x^j)
 \]

• However, we should really minimize expected loss on all data:
 \[
 \ell(w) = E_x [\ell(w, x)] = \int p(x) \ell(w, x) dx
 \]

• So, we are approximating the integral by the average on the training data
Gradient Ascent in Terms of Expectations

- “True” objective function:

\[\ell(w) = E_x [\ell(w, x)] = \int p(x) \ell(w, x) dx \]

- Taking the gradient:

\[\nabla \ell(w) = E_x [\nabla \ell(w, x)] \quad \text{leads to} \quad \sum_{j=1}^D \ell(x, \omega_j) \]

- “True” gradient ascent rule:

\[w \leftarrow w + \eta E_x [\nabla \ell(x, \omega)] \]

- How do we estimate expected gradient?
SGD: Stochastic Gradient Ascent (or Descent)

- “True” gradient: $\nabla \ell(w) = E_x [\nabla \ell(w, x)]$

- Sample based approximation:

 - What if we estimate gradient with just one sample???
 - Unbiased estimate of gradient
 - Very noisy!
 - Called stochastic gradient ascent (or descent)
 - Among many other names
 - VERY useful in practice!!!
Stochastic Gradient Ascent: General Case

- Given a stochastic function of parameters:
 - Want to find maximum

- Start from $w^{(0)}$

- Repeat until convergence:
 - Get a sample data point x^t
 - Update parameters:

- Works in the online learning setting!
- Complexity of each gradient step is constant in number of examples!
- In general, step size changes with iterations
Stochastic Gradient Ascent for Logistic Regression

• Logistic loss as a stochastic function:
 \[E_x [\ell(w, x)] = E_x [\ln P(y|x, w) - \frac{\lambda}{2} ||w||^2] \]

• Batch gradient ascent updates:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \frac{1}{N} \sum_{j=1}^{N} x_i^{(j)} [y^{(j)} - P(Y = 1|x^{(j)}, w^{(t)})] \right\} \]

• Stochastic gradient ascent updates:
 – Online setting:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right\} \]
Convergence Rate of SGD

• **Theorem:**
 - (see Nemirovski et al ‘09 from readings)
 - Let f be a strongly convex stochastic function
 - Assume gradient of f is Lipschitz continuous and bounded

 - Then, for step sizes:

 - The expected loss decreases as $O(1/t)$:
Convergence Rates for Gradient Descent/Ascent vs. SGD

- Number of Iterations to get to accuracy
 \[\ell(w^*) - \ell(w) \leq \epsilon \]

- Gradient descent:
 - If func is strongly convex: \(O(\ln(1/\epsilon)) \) iterations

- Stochastic gradient descent:
 - If func is strongly convex: \(O(1/\epsilon) \) iterations

- Seems exponentially worse, but much more subtle:
 - Total running time, e.g., for logistic regression:
 - Gradient descent:
 - SGD:
 - SGD can win when we have a lot of data
 - See readings for more details
What you should know about Logistic Regression (LR) and Click Prediction

• Click prediction problem:
 – Estimate probability of clicking
 – Can be modeled as logistic regression

• Logistic regression model: Linear model

• Gradient ascent to optimize conditional likelihood

• Overfitting + regularization

• Regularized optimization
 – Convergence rates and stopping criterion

• Stochastic gradient ascent for large/streaming data
 – Convergence rates of SGD