Case Study 3: fMRI Prediction

LASSO Solvers – Part 2:
SCD for LASSO (Shooting)
Parallel SCD (Shotgun)
Parallel SGD
Averaging Solutions

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Sham Kakade
May 5, 2016
Scaling Up LASSO Solvers

• Another way to solve LASSO problem:
 – Stochastic Coordinate Descent (SCD)
 – Minimizing a coordinate in LASSO

• A simple SCD for LASSO (Shooting)
 – Your HW, a more efficient implementation! 😊
 – Analysis of SCD

• Parallel SCD (Shotgun)

• Other parallel learning approaches for linear models
 – Parallel stochastic gradient descent (SGD)
 – Parallel independent solutions then averaging

• ADMM
Coordinate Descent

- Given a function F
 - Want to find minimum

- Often, hard to find minimum for all coordinates, but easy for one coordinate

- Coordinate descent:
 - How do we pick a coordinate?
 - When does this converge to optimum?
Soft Thresholding

\[\min_{\beta_j} \text{obj.} \left(\beta_1, \ldots, \beta_j, \ldots, \beta_p \right) \]

\[\hat{\beta}_j = \begin{cases}
(c_j + \lambda)/a_j & c_j < -\lambda \\
0 & c_j \in [-\lambda, \lambda] \\
(c_j - \lambda)/a_j & c_j > \lambda
\end{cases} \]

\[c_j \propto \text{cov}(x_j, r_j) \]

\[a_j = \mathbb{E}[x_j^2] \]

If \(X'X = I \)

\[\beta_j = \frac{c_j}{a_j} \]

From Kevin Murphy textbook
Stochastic Coordinate Descent for LASSO (aka Shooting Algorithm)

• Repeat until convergence
 – Pick a coordinate j at random
 • Set:
 $\hat{\beta}_j = \begin{cases}
 (c_j + \lambda)/a_j & c_j < -\lambda \\
 0 & c_j \in [-\lambda, \lambda] \\
 (c_j - \lambda)/a_j & c_j > \lambda
 \end{cases}$

• Where:
 $a_j = 2 \sum_{i=1}^{N} (x^i_j)^2$
 $c_j = 2 \sum_{i=1}^{N} x^i_j (y^i - \beta'_j x^i_{-j})$
Analysis of SCD [Shalev-Shwartz, Tewari ’09/’11]

• Analysis works for LASSO, L1 regularized logistic regression, and other objectives!

• For (coordinate-wise) strongly convex functions:
 • Theorem:
 – Starting from
 – After T iterations
 – Where $E[\cdot]$ is wrt random coordinate choices of SCD

• Natural question: How does SCD & SGD convergence rates differ?
Shooting: Sequential SCD

Lasso: \(\min F(\) \) where \(F(\) = \| Xy \|_2^2 + \| \|_1 \)

Stochastic Coordinate Descent (SCD) (e.g., Shalev-Shwartz & Tewari, 2009)

While not converged,
- Choose random coordinate \(j \),
- Update \(\beta_j \) (closed-form minimization)

\[
F(\) \text{ contour}
\]

©Sham Kakade 2016
Shotgun: Parallel SCD [Bradley et al ‘11]

Lasso: \[\min F(\cdot) \text{ where } F(\cdot) = \| X y \|_2^2 + \| \cdot \|_1 \]

Shotgun (Parallel SCD)

While not converged,
- On each of \(P \) processors,
 - Choose random coordinate \(j \),
 - Update \(\beta_j \) (same as for Shooting)
Is SCD inherently sequentially?

Lasso: \(\min F(\cdot) \) where \(F(\cdot) = \| X y \|_2^2 + \| \cdot \|_1 \)

Coordinate update:

\[
\begin{align*}
 j &\leftarrow j + j & (\text{closed-form minimization})
\end{align*}
\]

Collective update:

\[
\begin{pmatrix}
 0 \\
 0 \\
 0 \\
 i
\end{pmatrix} = \\
\begin{pmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{pmatrix}
\]

©Sham Kakade 2016
Convergence Analysis

Lasso: \(\min F(\cdot) \) where \(F(\cdot) = \| X y \|_2^2 + \| \cdot \|_1 \)

Theorem: Shotgun Convergence
Assume \(P < \frac{\rho}{1 + 1} \)
where \(\rho = \) spectral radius of \(X^T X \)

\[
E F(T) = F(\star) \\
\frac{\rho \left(\frac{1}{2} \| \star \|_2^2 + F(0) \right)}{TP}
\]

Nice case: Uncorrelated features
\(= _ \) \(P_{\text{max}} = _ \)

Bad case: Correlated features
\(= _ \) \(P_{\text{max}} = _ \) (at worst)
Stepping Back...

• Stochastic coordinate ascent
 – Optimization:
 – Parallel SCD:
 – Issue:
 – Solution:

• Natural counterpart:
 – Optimization:
 – Parallel
 – Issue:
 – Solution:
What you need to know

- Sparsistency
- Fused LASSO
- LASSO Solvers
 - LARS
 - A simple SCD for LASSO (Shooting)
 - Your HW, a more efficient implementation! 😊
 - Analysis of SCD
 - Parallel SCD (Shotgun)
Case Study 3: fMRI Prediction

“Scalable” LASSO Solvers:
Parallel SCD (Shotgun)
Parallel SGD
Averaging Solutions
ADMM

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Sham Kakade
May 5th, 2016
Stepping Back...

• Stochastic coordinate ascent
 – Optimization:
 – Parallel SCD:
 – Issue:
 – Solution:

• Natural counterpart:
 – Optimization:
 – Parallel
 – Issue:
 – Solution:
Parallel SGD with No Locks
[e.g., Hogwild!, Niu et al. ‘11]

- Each processor in parallel:
 - Pick data point \(i \) at random
 - For \(j = 1 \ldots p \):

- Assume atomicity of:
Addressing Interference in Parallel SGD

• Key issues:
 – Old gradients
 – Processors overwrite each other’s work

• Nonetheless:
 – Can achieve convergence and some parallel speedups
 – Proof uses weak interactions, but through sparsity of data points
Problem with Parallel SCD and SGD

• Both Parallel SCD & SGD assume access to current estimate of weight vector

• Works well on shared memory machines

• Very difficult to implement efficiently in distributed memory

• Open problem: Good parallel SGD and SCD for distributed setting...
 – Let’s look at a trivial approach
Simplest Distributed Optimization Algorithm Ever Made

• Given N data points & P machines
• Stochastic optimization problem:
• Distribute data:
 • Solve problems independently
 • Merge solutions
• Why should this work at all????
For Convex Functions...

- Convexity:

- Thus:
Hopefully...

- Convexity only guarantees:

- But, estimates from independent data!

Figure from John Duchi

©Sham Kakade 2016
Analysis of Distribute-then-Average

[Zhang et al. ‘12]

- Under some conditions, including strong convexity, lots of smoothness, etc.
- If all data were in one machine, converge at rate:

- With P machines, converge at a rate:
Tradeoffs, tradeoffs, tradeoffs,…

- Distribute-then-Average:
 - “Minimum possible” communication
 - Bias term can be a killer with finite data
 - Issue definitely observed in practice
 - Significant issues for L1 problems:

- Parallel SCD or SGD
 - Can have much better convergence in practice for multicore setting
 - Preserves sparsity (especially SCD)
 - But, hard to implement in distributed setting
Alternating Directions Method of Multipliers

• A tool for solving convex problems with separable objectives:

• LASSO example:

• Know how to minimize $f(\beta)$ or $g(\beta)$ separately
ADMM Insight

• Try this instead:

• Solve using method of multipliers
• Define the augmented Lagrangian:

 – Issue: L2 penalty destroys separability of Lagrangian
 – Solution: Replace minimization over (x, z) by alternating minimization
ADMM Algorithm

• Augmented Lagrangian:

\[L_\rho(x, z, y) = f(x) + g(z) + y^T(x - z) + \frac{\rho}{2}||x - z||^2_2 \]

• Alternate between:

1. \(x \leftarrow \)

2. \(z \leftarrow \)

1. \(y \leftarrow \)
ADMM for LASSO

\[L_\rho(x, z, y) = f(x) + g(z) + y^T(x - z) + \frac{\rho}{2}||x - z||^2_2 \]

• Objective:

• Augmented Lagrangian:

\[L_\rho(\beta, z, a) = \]

• Alternate between:

1. \(\beta \leftarrow \)

2. \(z \leftarrow \)

1. \(a \leftarrow \)
ADMM Wrap-Up

• When does ADMM converge?
 – Under very mild conditions
 – Basically, f and g must be convex

• ADMM is useful in cases where
 – $f(x) + g(x)$ is challenging to solve due to coupling
 – We can minimize
 • $f(x) + (x-a)^2$
 • $g(x) + (x-a)^2$

• Reference
What you need to know

• A simple SCD for LASSO (Shooting)
 – Your HW, a more efficient implementation! 😊
 – Analysis of SCD

• Parallel SCD (Shotgun)

• Other parallel learning approaches for linear models
 – Parallel stochastic gradient descent (SGD)
 – Parallel independent solutions then averaging

• ADMM
 – General idea
 – Application to LASSO