Case Study 1: Estimating Click Probabilities

Tackling an Unknown Number of Features with Sketching

Motivating AdaGrad (Duchi, Hazan, Singer 2011)

• Assuming $\mathbf{w} \in \mathbb{R}^d$, standard stochastic (sub)gradient descent updates are of the form:

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \eta g_{t,i}^{(i)}$$

• Should all features share the same learning rate?

• Often have high-dimensional feature spaces
 – Many features are irrelevant
 – Rare features are often very informative

• Adagrad provides a feature-specific adaptive learning rate by incorporating knowledge of the geometry of past observations
AdaGrad Algorithm

- At time t, estimate optimal (sub)gradient modification A_t by
 \[g_t = \nabla f(x_t), \quad A_t = \left(\sum_{\tau=1}^{t} g_\tau g_\tau^T \right)^{\frac{1}{2}} \]
 \[\text{use proj 6.2 with } A_t \text{ at time } t. \]

- For d large, A_t is computationally intensive to compute. Instead,
 \[\text{diag}(A_t) = \begin{pmatrix} A_{1,1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & A_{d,d} \end{pmatrix}, \quad \text{where } A_{\tau,\tau} \approx \sum_{\tau=1}^{t} g_\tau^2. \]

- Then, algorithm is a simple modification of normal updates:
 \[w^{(t+1)} = \arg \min_{w \in \mathcal{W}} \left\| w - (w^{(t)} - \eta \text{diag}(A_t)^{-1} g_t) \right\|_2^2 \text{ diag}(A_t) \]
 \[w^{(t+1)} = w^{(t)} - \eta A_t^{-\frac{1}{2}} g_t. \]

AdaGrad in Euclidean Space

- For $\mathcal{W} = \mathbb{R}^d$,

- For each feature dimension,
 \[w_{i}^{(t+1)} = w_{i}^{(t)} - \eta_{t,i} g_{t,i}, \]
 where
 \[\eta_{t,i} = n \sqrt{A_{t,i}}. \]

- That is,
 \[w_{i}^{(t+1)} = w_{i}^{(t)} - \frac{\eta}{\sqrt{\sum_{\tau=1}^{t} g_{\tau,i}^2}} g_{t,i}. \]

- Each feature dimension has its own learning rate!
 - Adapts with t
 - Takes geometry of the past observations into account
 - Primary role of η is determining rate the first time a feature is encountered

©Sham Kakade 2016
AdaGrad Theoretical Guarantees

- AdaGrad regret bound:
 \[R_\infty := \max_t ||w^{(t)} - w^*||_\infty \]
 \[\sum_{t=1}^{\infty} \ell_t(w^{(t)}) - \ell_t(w^*) \leq 2R_\infty \sum_{t=1}^{\infty} g_{1:T,i}||_2 \]
 - In stochastic setting:
 \[\mathbb{E} \left[\ell \left(\frac{1}{T} \sum_{t=1}^{T} w^{(t)} \right) \right] - \ell(w^*) \leq \frac{2R_\infty}{T} \sum_{i=1}^{d} \mathbb{E} \left[||g_{1:T,i}||_2 \right] \]

- This really is used in practice!
- Many cool examples. Let’s just examine one...

AdaGrad Theoretical Example

- Expect to out-perform when gradient vectors are sparse
- SVM hinge loss example:
 \[\ell_t(w) = [1 - y^t \langle x^t, w \rangle]^+ \]
 \[x^t \in \{-1, 0, 1\}^d \]
- If \(x^t_i \neq 0 \) with probability \(\propto j^{-\alpha}, \quad \alpha > 1 \)
 \[\mathbb{E} \left[\ell \left(\frac{1}{T} \sum_{t=1}^{T} w^{(t)} \right) \right] - \ell(w^*) = O \left(\frac{||w^*||_\infty}{\sqrt{T}} \cdot \max \{ \log d, d^{1-\alpha/2} \} \right) \]
- Previously best known method:
 \[\mathbb{E} \left[\ell \left(\frac{1}{T} \sum_{t=1}^{T} w^{(t)} \right) \right] - \ell(w^*) = O \left(\frac{||w^*||_\infty}{\sqrt{T}} \cdot \sqrt{d} \right) \]
Neural Network Learning

- Very non-convex problem, but use SGD methods anyway

\[\ell(w, x) = \log(1 + \exp(\langle p(\langle w_1, x_1 \rangle) \cdots p(\langle w_k, x_k \rangle) \rangle, x_0))) \]

\[p(\alpha) = \frac{1}{1 + \exp(\alpha)} \]

(Dean et al. 2012)

Distributed, \(d = 1.7 \cdot 10^9 \) parameters. SGD and AdaGrad use 80 machines (1000 cores), L-BFGS uses 809 (10000 cores). Images from Duchi et al. ISMP 2012 slides

Related Ideas for Adversary

1. Newton’s Method
2. Conjugate gradient
3. BFGS
4. Natural gradient (loss)

\[w^{t+1} = w^t - \alpha \nabla_l \log p(z^{(t+1)}) \nabla_l \]
What you should know about Logistic Regression (LR) and Click Prediction

• Click prediction problem:
 – Estimate probability of clicking
 – Can be modeled as logistic regression
• Logistic regression model: Linear model
• Gradient ascent to optimize conditional likelihood
• Overfitting + regularization
• Regularized optimization
 – Convergence rates and stopping criterion
• Stochastic gradient ascent for large/streaming data
 – Convergence rates of SGD
• AdaGrad motivation, derivation, and algorithm

Problem 1: Complexity of LR Updates

• Logistic regression update:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1| x^{(t)}, w^{(t)})] \right\} \]

• Complexity of updates:
 – Constant in number of data points
 – In number of features?
 • Problem both in terms of computational complexity and sample complexity
 \[\text{\underline{1 \% f e r t h e s a m p l e}} \]
• What can we with very high dimensional feature spaces?
 – Kernels not always appropriate, or scalable
 – What else?
Problem 2: Unknown Number of Features

- For example, bag-of-words features for text data:
 - “Mary had a little lamb, little lamb…”
 - What’s the dimensionality of x?
 - What if we see new word that was not in our vocabulary?
 - Obamacare
 - Theoretically, just keep going in your learning, and initialize $w_{\text{Obamacare}} = 0$
 - In practice, need to re-allocate memory, fix indices,… A big problem for Big Data

What Next?

- Hashing & Sketching!
 - Addresses both dimensionality issues and new features in one approach!

- Let’s start with a much simpler problem: Is a string in our vocabulary?
 - Membership query

- How do we keep track?
 - Explicit list of strings
 - Very slow
 - Fancy Trees and Tries
 - Hard to implement and maintain
 - Hash tables?
Hash Functions and Hash Tables

- Hash functions map **keys** to integers (bins):
 - Keys can be integers, strings, objects,…

- Simple example: \(\text{mod} \)
 - \(h(i) = (a \cdot i + b) \mod m \)
 - \(a = 7 \), \(b = 11 \), \(m = 32 \)
 - \(i = 4 \), \(h(i) = 39 \mod 32 = 7 \)
 - Random choice of \((a,b)\) (usually primes)
 - If inputs are uniform, bins are uniformly used
 - From two results can recover \((a,b)\), so not pairwise independent -> Typically use fancier hash functions

- Hash table:
 - Store list of objects in each bin
 - Exact, but storage still linear in size of object ids, which can be very long
 - E.g., hashing very long strings, entire documents

Hash Bit-Vector Table-Based Membership Query

- Approximate queries with one-sided error: Accept false positives only
 - If we say no, element is not in set
 - If we say yes, element is very likely to be in set

- Given hash function, keep binary bit vector \(v \) of length \(m \):
 - Query \(Q(i) \): Element \(i \) in set?
 - \(v(h(i)) = 0 \) \(\Rightarrow \) \(Q(i) = 0 \)
 - \(v(h(i)) = 1 \) \(\Rightarrow \) \(Q(i) = \text{prob. yes} \)

- Collisions:
 - \(h(\text{obama\textunderscore name}) = 8 \)
 - \(h(\text{man\textunderscore name}) = 8 \)
 - \(\text{prob. at collision} \)

- Guarantee: One-sided errors, but may make many mistakes
 - How can we improve probability of correct answer?
Bloom Filter: Multiple Hash Tables

- Single hash table → Many false positives
- Multiple hash tables with independent hash functions
 - Apply $h_1(i), \ldots, h_p(i)$, set all bits to 1
- Query $Q(i)$?
 \[
 \text{if } \forall j \quad V_j(h_j(i)) = 1 \quad \text{set } Q(i) = \text{Yes}
 \]
 \[
 \text{else } Q(i) = \text{No}
 \]
- Significantly decrease probability of false positives

Analysis of Bloom Filter

- Want to keep track of n elements with false positive probability of $\delta > 0$... how large m & p?
 \[
 \dim_{\text{of each table}} \leq \# \text{ of hash functions}
 \]
- Simple analysis yields:
 \[
 m = \frac{n \log_2 \frac{1}{\delta}}{\ln 2} \approx 1.5n \log_2 \frac{1}{\delta}
 \]
 \[
 p = \log_2 \frac{1}{\delta} \quad \text{prob of error dec. exp. quickly with } p
 \]
Sketching Counts

• Bloom Filter is super cool, but not what we need...
 – We don’t just care about whether a feature existed before, but to keep track of counts of occurrences of features! (assuming x_i integer)

• Recall the LR update:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \{ -\lambda w_i^{(t)} + x_i^{(t)}[y^{(t)}] - P(Y = 1|x^{(t)}, w^{(t)}) \} \]

• Must keep track of (weighted) counts of each feature:
 – E.g., with sparse data, for each non-zero dimension i in $x^{(t)}$:

 \[
 \text{for } i \in \{ \text{ s.t. } x_i^{(t)} \neq 0 \}
 \text{ w } + x_i^{(t)} \cdot \text{ const }\]

• Can we generalize the Bloom Filter?

Count-Min Sketch: single vector

• Simpler problem: Count how many times you see each string

• Single hash function:
 – Keep Count vector of length m
 – every time see string i:

 \[
 \text{Count}[h(i)] \leftarrow \text{Count}[h(i)] + 1
 \]

 – Again, collisions could be a problem:
 • a_i is the count of element i:

 \[
 \text{count}(i) = \sum_{i: h(i) = j} a_i
 \]
Count-Min Sketch: general case

- Keep \(p \) by \(m \) Count matrix

- \(p \) hash functions:
 - Just like in Bloom Filter, decrease errors with multiple hashes
 - Every time see string \(i \):
 \[
 \forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1
 \]

Querying the Count-Min Sketch

- \(\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1 \)
- Query \(Q(i) \)?
 - What is in \(\text{Count}[j,k] \)?
 \[
 \text{count}[(i,k)] = \sum_{i : h_j(i) = k} a_i \geq a_i
 \]
 - Thus:

 - Return:
 \[
 a_i \leq \min \text{count}(j, h_j(i)) \geq a_i
 \]
Analysis of Count-Min Sketch

\[\hat{a}_i = \min_j \text{Count}[j, h(i)] \geq a_i \]

- Set:
 \[m = \left\lceil \frac{e}{\epsilon} \right\rceil, \quad p = \left\lceil \ln \frac{1}{\delta} \right\rceil \]
 \[O\left(\frac{m}{\epsilon^2}\right) \]

- Then, after seeing \(n \) elements:
 \[\hat{a}_i \leq a_i + \epsilon n \]

- With probability at least \(1-\delta \)

Proof of Count-Min for Point Query with Positive Counts: Part 1 – Expected Bound

- \(I_{i,j,k} \) = indicator that \(i \) & \(k \) collide on hash \(j \):

- Bounding expected value:

- \(X_{ij} \) = total colliding mass on estimate of count of \(i \) in hash \(j \):

- Bounding colliding mass:

- Thus, estimate from each hash function is close in expectation
Proof of Count-Min for Point Query with Positive Counts: Part 2 – High Probability Bounds

- What we know: \(\text{Count}[j, h_j(i)] = a_i + X_{i,j} \quad E[X_{i,j}] \leq \frac{\epsilon n}{e} \)

- Markov inequality: For \(z_1, \ldots, z_k \) positive iid random variables
 \[P(\forall z_i : z_i > \alpha E[z_i]) < \alpha^{-k} \]

- Applying to the Count-Min sketch:

But updates may be positive or negative

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|\mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\} \]

- Count-Min sketch for positive & negative case
 - \(a_i \) no longer necessarily positive

- Update the same: Observe change \(\Delta_i \) to element \(i \):
 \[\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + \Delta_i \]
 - Each \(\text{Count}[j, h(j)] \) no longer an upper bound on \(a_i \)

- How do we make a prediction?

- Bound: \[|\hat{a}_i - a_i| \leq 3\epsilon ||\mathbf{a}||_1 \]
 - With probability at least \(1-\delta^{1/4} \), where \(||\mathbf{a}|| = \sum_i |a_i| \)
Finally, Sketching for LR

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|\mathbf{x}^{(t)}, \mathbf{w}^{(t)})] \right\} \]

- Never need to know size of vocabulary!
- At every iteration, update Count-Min matrix:

- Making a prediction:

- Scales to huge problems, great practical implications...

Hash Kernels

- Count-Min sketch not designed for negative updates
- Biased estimates of dot products

- Hash Kernels: Very simple, but powerful idea to remove bias
- Pick 2 hash functions:
 - \(h \): Just like in Count-Min hashing
 - \(\xi \): Sign hash function
 - Removes the bias found in Count-Min hashing (see homework)

- Define a “kernel”, a projection \(\phi \) for \(\mathbf{x} \):
Hash Kernels Preserve Dot Products

\[\phi_i(x) = \sum_{j: h(j) = i} \xi(j)x_j \]

- Hash kernels provide unbiased estimate of dot-products!
- Variance decreases as \(O(1/m) \)
- Choosing \(m \)? For \(\varepsilon > 0 \), if
 \[
 m = \mathcal{O} \left(\frac{\log N}{\varepsilon^2} \right)
 \]
 - Under certain conditions...
 - Then, with probability at least 1-\(\delta \):
 \[
 (1 - \varepsilon)\|x - x'\|_2^2 \leq \|\phi(x) - \phi(x')\|_2^2 \leq (1 + \varepsilon)\|x - x'\|_2^2
 \]

Learning With Hash Kernels

- Given hash kernel of dimension \(m \), specified by \(h \) and \(\xi \)
 - Learn \(m \) dimensional weight vector
- Observe data point \(x \)
 - Dimension does not need to be specified a priori!
- Compute \(\phi(x) \):
 - Initialize \(\phi(x) \)
 - For non-zero entries \(j \) of \(x_j \):
- Use normal update as if observation were \(\phi(x) \), e.g., for LR using SGD:
 \[
 w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + \phi_i(x^{(t)})y^{(t)} - P(Y = 1|\phi(x^{(t)}), w^{(t)}) \right\}
 \]
Interesting Application of Hash Kernels: Multi-Task Learning

• Personalized click estimation for many users:
 – One global click prediction vector \(w \):
 • But...
 – A click prediction vector \(w_u \) per user \(u \):
 • But...

• Multi-task learning: Simultaneously solve multiple learning related problems:
 – Use information from one learning problem to inform the others

• In our simple example, learn both a global \(w \) and one \(w_u \) per user:
 – Prediction for user \(u \):
 • If we know little about user \(u \):
 • After a lot of data from user \(u \):

Problems with Simple Multi-Task Learning

• Dealing with new user is annoying, just like dealing with new words in vocabulary

• Dimensionality of joint parameter space is HUGE, e.g. personalized email spam classification from Weinberger et al.:
 – 3.2M emails
 – 40M unique tokens in vocabulary
 – 430K users
 – 16T parameters needed for personalized classification!
Hash Kernels for Multi-Task Learning

• Simple, pretty solution with hash kernels:
 – Very multi-task learning as (sparse) learning problem with (huge) joint data point \(z \) for point \(x \) and user \(u \):

• Estimating click probability as desired:

• Address huge dimensionality, new words, and new users using hash kernels:

Simple Trick for Forming Projection \(\phi(x,u) \)

• Observe data point \(x \) for user \(u \)
 – Dimension does not need to be specified a priori and user can be new!

• Compute \(\phi(x,u) \):
 – Initialize \(\phi(x,u) \)
 – For non-zero entries \(j \) of \(x_j \):
 • E.g., \(j='\text{Obamacare}' \)
 • Need two contributions to \(\phi \):
 – Global contribution
 – Personalized Contribution
 • Simply:

• Learn as usual using \(\phi(x,u) \) instead of \(\phi(x) \) in update function
Results from Weinberger et al. on Spam Classification: Effect of m

Figure 2. The decrease of uncaught spam over the baseline classifier averaged over all users. The classification threshold was chosen to keep the not-spam misclassification fixed at 1%. The hashed global classifier (global-hashed) converges relatively soon, showing that the distortion error ϵ_d vanishes. The personalized classifier results in an average improvement of up to 30%.

Results from Weinberger et al. on Spam Classification: Multi-Task Effect

Figure 3. Results for users clustered by training emails. For example, the bucket [8, 15] consists of all users with eight to fifteen training emails. Although users in buckets with large amounts of training data do benefit more from the personalized classifier (up to 65% reduction in spam), even users that did not contribute to the training corpus at all obtain almost 20% spam-reduction.
What you need to know

• Hash functions
• Bloom filter
 – Test membership with some false positives, but very small number of bits per element
• Count-Min sketch
 – Positive counts: upper bound with nice rates of convergence
 – General case
• Application to logistic regression
• Hash kernels:
 – Sparse representation for feature vectors
 – Very simple, use two hash function (Can use one hash function...take least significant bit to define ξ)
 – Quickly generate projection ϕ(x)
 – Learn in projected space
• Multi-task learning:
 – Solve many related learning problems simultaneously
 – Very easy to implement with hash kernels
 – Significantly improve accuracy in some problems *(if there is enough data from individual users)*