Case Study 1: Estimating Click Probabilities

Problem 1: Complexity of LR Updates

- Logistic regression update:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right\} \]

- Complexity of updates:
 - Constant in number of data points
 - In number of features?
 - Problem both in terms of computational complexity and sample complexity
 - What can we do with very high dimensional feature spaces?
 - Kernels not always appropriate, or scalable
 - What else?
What Next?

- **Hashing & Sketching!**
 - Addresses both dimensionality issues and new features in one approach!

- Let’s start with a much simpler problem: Is a string in our vocabulary?
 - Membership query

- How do we keep track?
 - Explicit list of strings
 - Very slow
 - Fancy Trees and Tries
 - Hard to implement and maintain
 - Hash tables?

Problem 2: Unknown Number of Features

- For example, bag-of-words features for text data:
 - “Mary had a little lamb, little lamb…”

- What’s the dimensionality of \(x \)?
- What if we see new word that was not in our vocabulary?
 - Obamacare
 - Theoretically, just keep going in your learning, and initialize \(w_{\text{Obamacare}} = 0 \)
 - In practice, need to re-allocate memory, fix indices,… A big problem for Big Data
Count-Min Sketch: general case

- Keep \(p \) by \(m \) Count matrix
 \[
 \begin{array}{ccc}
 \text{Count}_0(i) \\
 \vdots \\
 \text{Count}_m(i) \\
 \end{array}
 \]
- \(p \) hash functions:
 - Just like in Bloom Filter, decrease errors with multiple hashes
 - Every time see string \(i \):
 \[
 \forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1
 \]

Querying the Count-Min Sketch

\[
\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1
\]

- Query \(Q(i) \)?
 - What is in \(\text{Count}[j,k] \)?
 \[
 \text{Count}[j,k] = \sum_{i : h_j(i) = k} a_i \geq a_i
 \]
 - Thus:
 \[
 \text{tightest upper bound.}
 \]
 - Return:
 \[
 a_i = \min_{j} \text{Count}(j, h_j(i)) \geq a_i
 \]
Analysis of Count-Min Sketch

\[\hat{a}_i = \min_j \text{Count}[j, h(i)] \geq a_i \]

- Set:
 \[0 \left(\frac{1}{\epsilon} \right) \]
 \[m = \left\lceil \frac{e}{\epsilon} \right\rceil \quad p = \left\lceil \ln \frac{1}{\delta} \right\rceil \quad O \left(\frac{n}{\delta} \right) \]

- Then, after seeing \(n \) elements:
 \[\hat{a}_i \leq a_i + \epsilon n \]

- With probability at least \(1 - \delta \)

Proof of Count-Min for Point Query with Positive Counts: Part 1 – Expected Bound

- \(l_{i,j,k} \) = indicator that \(i \) & \(k \) collide on hash \(j \):
 \[= O(\epsilon) \]

- Bounding expected value:
 \[\mathbb{E} \left[\sum_{j} l_{i,j,k} \right] = \mathbb{P}(h_i(i) = h_j(k)) = \frac{1}{m} \]

- \(X_{i,j} \) = total colliding mass on estimate of count of \(i \) in hash \(j \):
 \[X_{i,j} = \sum_{k \in \mathbb{X}_i} l_{i,j,k} \]

- Bounding colliding mass:
 \[\mathbb{E}(X_{i,j}) \leq O(n \epsilon) \]

- Thus, estimate from each hash function is close in expectation
Proof of Count-Min for Point Query with Positive Counts: Part 2 – High Probability Bounds

• What we know:
 \[\text{Count}[j, h_j(i)] = a_i + X_{i,j} \quad \mathbb{E}[X_{i,j}] \leq \frac{\varepsilon}{e} \]

• Markov inequality: For \(z_1, \ldots, z_k \) positive iid random variables
 \[P(\forall z_i : z_i > \alpha \mathbb{E}[z_i]) < \alpha^{-k} \quad \mathbb{E} \left[\sum_{i=1}^{k} z_i \right] \leq \mathbb{E} \left[\sum_{i=1}^{k} \alpha z_i \right] \]

• Applying to the Count-Min sketch:

But updates may be positive or negative

\[w^{(t+1)}_i \leftarrow w^{(t)}_i + \eta_k \left\{ -\lambda w^{(t)}_i + x^{(t)}_i y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)}) \right\} \]

• Count-Min sketch for positive & negative case
 \(a_i \) no longer necessarily positive

• Update the same: Observe change \(\Delta_i \) to element \(i \):
 \[\forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + \Delta_i \]

 – Each \(\text{Count}[j, h(j)] \) no longer an upper bound on \(a_j \)

• How do we make a prediction?

\[\hat{a}_i = \text{median}(\text{count} + \sum_{j=1}^{p} h_j(a_j)) \]

• Bound:
 \[|\hat{a}_i - a_i| \leq 3\varepsilon \|a\|_1 \]

 – With probability at least 1-\(\delta^{1/4} \), where \(\|a\|_1 = \sum_i |a_i| \)
Finally, Sketching for LR

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)}) \right\} \]

- Never need to know size of vocabulary!
- At every iteration, update Count-Min matrix:

- Making a prediction:

- Scales to huge problems, great practical implications...

Hash Kernels

- Count-Min sketch not designed for negative updates
- Biased estimates of dot products

Hash Kernels: Very simple, but powerful idea to remove bias
- Pick 2 hash functions:
 - \(h \): Just like in Count-Min hashing
 - \(\xi \): Sign hash function
 - Removes the bias found in Count-Min hashing (see homework)

- Define a “kernel”, a projection \(\phi \) for \(x \):
 \[
 \phi_i = \sum_j E_{\xi}(x_s h(j)) \xi(j) a_{ij}
 \]
Hash Kernels Preserve Dot Products

\[\phi_i(x) = \sum_{j: h(j) = i} \xi(j) x_j \]

- Hash kernels provide unbiased estimate of dot-products!
- Variance decreases as \(O(1/m)\)
- Choosing \(m\)? For \(\varepsilon > 0\), if:
 \[m = \mathcal{O} \left(\frac{\log N}{\varepsilon^2} \right) \]
 - Under certain conditions...
 - Then, with probability at least 1-\(\delta\):
 \[(1 - \varepsilon) \|x - x'\|^2 \leq \|\phi(x) - \phi(x')\|^2 \leq (1 + \varepsilon) \|x - x'\|^2 \]

Learning With Hash Kernels

- Given hash kernel of dimension \(m\), specified by \(h\) and \(\xi\)
 - Learn \(m\) dimensional weight vector
- Observe data point \(x\)
 - Dimension does not need to be specified a priori!
- Compute \(\phi(x)\):
 - Initialize \(\phi(x)\)
 - For non-zero entries \(j\) of \(x_j\):
 \[\phi(x) \cdot \omega \leftarrow \frac{\phi(x) \cdot \omega}{1 + \varepsilon \phi(x) \cdot \omega} \]
- Use normal update as if observation were \(\phi(x)\), e.g., for LR using SGD:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \phi(x^{(t)}) y^{(t)} - P(Y = 1|\phi(x^{(t)}), w^{(t)}) \right\} \]
Interesting Application of Hash Kernels: Multi-Task Learning

• Personalized click estimation for many users:
 – One global click prediction vector \(\mathbf{w} \):

 \[
 \frac{e^{\mathbf{w}^\top \mathbf{x}}}{1 + e^{\mathbf{w}^\top \mathbf{x}}}
 \]

 • But...
 – A click prediction vector \(\mathbf{w}_u \) per user \(u \):

 \[
 \frac{e^{\mathbf{w}_u^\top \mathbf{x}}}{1 + e^{\mathbf{w}_u^\top \mathbf{x}}}
 \]

 • But...

• Multi-task learning: Simultaneously solve multiple learning related problems:
 – Use information from one learning problem to inform the others

• In our simple example, learn both a global \(\mathbf{w} \) and one \(\mathbf{w}_u \) per user:
 – Prediction for user \(u \):

 \[
 \frac{e^{(\mathbf{w} + \mathbf{w}_u)^\top \mathbf{x}}}{1 + e^{(\mathbf{w} + \mathbf{w}_u)^\top \mathbf{x}}}
 \]

 – If we know little about user \(u \):
 – After a lot of data from user \(u \):

©Sham Kakade 2016

Problems with Simple Multi-Task Learning

• Dealing with new user is annoying, just like dealing with new words in vocabulary

• Dimensionality of joint parameter space is HUGE, e.g. personalized email spam classification from Weinberger et al.:
 – 3.2M emails
 – 40M unique tokens in vocabulary
 – 430K users
 – 16T parameters needed for personalized classification!
Hash Kernels for Multi-Task Learning

- Simple, pretty solution with hash kernels:
 - Very multi-task learning as (sparse) learning problem with (huge) joint data point z for point x and user u:

$$z_{x,u} = (x_1 \cdots x_d, 0, 0, \cdots, x_1 \cdots x_d, 0, 0, \cdots)$$

- Estimating click probability as desired:

$$w = \left(\bar{w}, \bar{w}, \cdots, \bar{w}, \cdots \bar{w}_{\#user} \right)$$

- Address huge dimensionality, new words, and new users using hash kernels:

Simple Trick for Forming Projection $\phi(x,u)$

- Observe data point x for user u
 - Dimension does not need to be specified a priori and user can be new!

- Compute $\phi(x,u)$:
 - Initialize $\phi(x,u) = 0$
 - For non-zero entries j of x:
 - E.g., $j=\text{Obamacare}$
 - Need two contributions to ϕ:
 - Global contribution
 - Personalized Contribution
 - Simply:

- Learn as usual using $\phi(x,u)$ instead of $\phi(x)$ in update function
Results from Weinberger et al. on Spam Classification: Effect of m

Figure 2. The decrease of uncaught spam over the baseline classifier averaged over all users. The classification threshold was chosen to keep the not-spam misclassification fixed at 1%. The hashed global classifier (global-hashed) converges relatively soon, showing that the distortion error ϵ_d vanishes. The personalized classifier results in an average improvement of up to 30%.

Results from Weinberger et al. on Spam Classification: Multi-Task Effect

Figure 3. Results for users clustered by training emails. For example, the bucket $[8,15]$ consists of all users with eight to fifteen training emails. Although users in buckets with large amounts of training data do benefit more from the personalized classifier (up to 65% reduction in spam), even users that did not contribute to the training corpus at all obtain almost 20% spam-reduction.
What you need to know

- Hash functions
- Bloom filter
 - Test membership with some false positives, but very small number of bits per element
- Count-Min sketch
 - Positive counts: upper bound with nice rates of convergence
 - General case
- Application to logistic regression
- Hash kernels:
 - Sparse representation for feature vectors
 - Very simple, use two hash function (can use one hash function... take least significant bit to define \(\xi \))
 - Quickly generate projection \(\varphi(x) \)
 - Learn in projected space
- Multi-task learning:
 - Solve many related learning problems simultaneously
 - Very easy to implement with hash kernels
 - Significantly improve accuracy in some problems (if there is enough data from individual users)