Problem 1: Complexity of LR Updates

• Logistic regression update:

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1 | x^{(t)}, w^{(t)})] \right\} \]

• Complexity of updates:
 – Constant in number of data points
 – In number of features?
 • Problem both in terms of computational complexity and sample complexity

• What can we with very high dimensional feature spaces?
 – Kernels not always appropriate, or scalable
 – What else?
What Next?

- **Hashing & Sketching**!
 - Addresses both dimensionality issues and new features in one approach!

- Let’s start with a much simpler problem: Is a string in our vocabulary?
 - Membership query

- How do we keep track?
 - Explicit list of strings
 - Very slow
 - Fancy Trees and Tries
 - Hard to implement and maintain
 - Hash tables?
Problem 2: Unknown Number of Features

• For example, bag-of-words features for text data:
 – “Mary had a little lamb, little lamb…”

• What’s the dimensionality of \mathbf{x}?

• What if we see a new word that was not in our vocabulary?
 – Obamacare
 – Theoretically, just keep going in your learning, and initialize $\mathbf{w}_{\text{Obamacare}} = 0$
 – In practice, need to re-allocate memory, fix indices,... A big problem for Big Data
Count-Min Sketch: general case

- Keep \(p \) by \(m \) Count matrix
 \[
 \text{count}_j(i) = \begin{cases} \text{count}_j(i) + 1, & \text{if } i \text{ is seen} \\ \text{count}_j(i), & \text{otherwise} \end{cases}
 \]

- \(p \) hash functions:
 - Just like in Bloom Filter, decrease errors with multiple hashes
 - Every time see string \(i \):
 \[
 \forall j \in \{1, \ldots, p\} : \text{Count}[j, h_j(i)] \leftarrow \text{Count}[j, h_j(i)] + 1
 \]
Querying the Count-Min Sketch

∀j ∈ {1, ..., p} : Count[j, h_j(i)] ← Count[j, h_j(i)] + 1

• Query Q(i)?
 – What is in Count[j,k]?
 \[\text{Count}(j,k) = \sum_{i : h_j(i) = k} a_i \geq \alpha. \]
 – Thus:
 \[\text{tightlyest upper bound}. \]
 – Return:
 \[\alpha_i \leq \min \text{count}(j, h_j(i)) \geq \alpha. \]
Analysis of Count-Min Sketch

\[\hat{a}_i = \min_j \text{Count}[j, h(i)] \geq a_i \]

- Set:
 \[m = \left\lceil \frac{e}{\epsilon} \right\rceil \quad p = \left\lceil \ln \frac{1}{\delta} \right\rceil \]
 \[O\left(\frac{\ln \frac{1}{\delta}}{\epsilon}\right) \]
- Then, after seeing \(n \) elements:
 \[\hat{a}_i \leq a_i + \epsilon n \]
- With probability at least \(1-\delta \)
Proof of Count-Min for Point Query with Positive Counts: Part 1 – Expected Bound

- \(I_{i,j,k} \) = indicator that \(i \) & \(k \) collide on hash \(j \):

- Bounding expected value:

- \(X_{i,j} \) = total colliding mass on estimate of count of \(i \) in hash \(j \):

- Bounding colliding mass:

- Thus, estimate from each hash function is close in expectation
Proof of Count-Min for Point Query with Positive Counts: Part 2 – High Probability Bounds

• What we know: \(\text{Count}[j, h_j(i)] = a_i + X_{i,j} \) \(E[X_{i,j}] \leq \frac{\epsilon}{e} n \)

• Markov inequality: For \(z_1,\ldots,z_k \) positive iid random variables

\[
P(\forall z_i : z_i > \alpha E[z_i]) < \alpha^{-k}
\]

• Applying to the Count-Min sketch:
But updates may be positive or negative

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right\} \]

- Count-Min sketch for positive & negative case
 - \(a_i \) no longer necessarily positive
- Update the same: Observe change \(\Delta_i \) to element \(i \):
 \[\forall j \in \{1, \ldots, p\} : Count[j, h_j(i)] \leftarrow Count[j, h_j(i)] + \Delta_i \]
 - Each \(Count[j,h(i)] \) no longer an upper bound on \(a_i \)
- How do we make a prediction?

- Bound: \(|\hat{a}_i - a_i| \leq 3\varepsilon \|a\|_1 \)
 - With probability at least \(1-\delta^{1/4} \), where \(\|a\| = \sum_i |a_i| \)
Finally, Sketching for LR

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right\} \]

- Never need to know size of vocabulary!
- At every iteration, update Count-Min matrix:

- Making a prediction:

- Scales to huge problems, great practical implications...
Hash Kernels

- Count-Min sketch not designed for negative updates
- Biased estimates of dot products

- **Hash Kernels**: Very simple, but powerful idea to remove bias
- Pick 2 hash functions:
 - h: Just like in Count-Min hashing
 - ξ: Sign hash function
 - Removes the bias found in Count-Min hashing (see homework)

- Define a “kernel”, a projection ϕ for x:

Hash Kernels Preserve Dot Products

$$\phi_i(x) = \sum_{j: h(j) = i} \xi(j)x_j$$

- Hash kernels provide unbiased estimate of dot-products!

- Variance decreases as $O(1/m)$

- Choosing m? For $\epsilon > 0$, if

 $$m = \mathcal{O}\left(\frac{\log \frac{N}{\delta}}{\epsilon^2}\right)$$

 - Under certain conditions...
 - Then, with probability at least $1 - \delta$:

 $$(1 - \epsilon)\|x - x'\|_2^2 \leq \|\phi(x) - \phi(x')\|_2^2 \leq (1 + \epsilon)\|x - x'\|_2^2$$

©Sham Kakade 2016
Learning With Hash Kernels

- Given hash kernel of dimension m, specified by h and ξ
 - Learn m dimensional weight vector
- Observe data point x
 - Dimension does not need to be specified a priori!
- Compute $\phi(x)$:
 - Initialize $\phi(x)$
 - For non-zero entries j of x_j:

- Use normal update as if observation were $\phi(x)$, e.g., for LR using SGD:
 $$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + \phi_i(x^{(t)})[y^{(t)} - P(Y = 1|\phi(x^{(t)}), w^{(t)})] \right\}$$
Interesting Application of Hash Kernels: Multi-Task Learning

• Personalized click estimation for many users:
 – One global click prediction vector \mathbf{w}:
 • But...
 – A click prediction vector \mathbf{w}_u per user u:
 • But...

• Multi-task learning: Simultaneously solve multiple learning related problems:
 – Use information from one learning problem to inform the others

• In our simple example, learn both a global \mathbf{w} and one \mathbf{w}_u per user:
 – Prediction for user u:
 – If we know little about user u:
 – After a lot of data from user u:
Problems with Simple Multi-Task Learning

• Dealing with new user is annoying, just like dealing with new words in vocabulary

• Dimensionality of joint parameter space is HUGE, e.g. personalized email spam classification from Weinberger et al.:
 – 3.2M emails
 – 40M unique tokens in vocabulary
 – 430K users
 – 16T parameters needed for personalized classification!
Hash Kernels for Multi-Task Learning

- Simple, pretty solution with hash kernels:
 - Very multi-task learning as (sparse) learning problem with (huge) joint data point z for point x and user u:

- Estimating click probability as desired:

- Address huge dimensionality, new words, and new users using hash kernels:
Simple Trick for Forming Projection $\phi(x,u)$

- Observe data point x for user u
 - Dimension does not need to be specified a priori and user can be new!

- Compute $\phi(x,u)$:
 - Initialize $\phi(x,u)$
 - For non-zero entries j of x_j:
 - E.g., j=‘Obamacare’
 - Need two contributions to ϕ:
 - Global contribution
 - Personalized Contribution
 - Simply:

- Learn as usual using $\phi(x,u)$ instead of $\phi(x)$ in update function
Results from Weinberger et al. on Spam Classification: Effect of m

Figure 2. The decrease of uncaught spam over the baseline classifier averaged over all users. The classification threshold was chosen to keep the not-spam misclassification fixed at 1%. The hashed global classifier (global-hashed) converges relatively soon, showing that the distortion error ϵ_d vanishes. The personalized classifier results in an average improvement of up to 30%.
Results from Weinberger et al. on Spam Classification: Multi-Task Effect

Figure 3. Results for users clustered by training emails. For example, the bucket $[8, 15]$ consists of all users with eight to fifteen training emails. Although users in buckets with large amounts of training data do benefit more from the personalized classifier (up-to 65% reduction in spam), even users that did not contribute to the training corpus at all obtain almost 20% spam-reduction.
What you need to know

• Hash functions

• Bloom filter
 – Test membership with some false positives, but very small number of bits per element

• Count-Min sketch
 – Positive counts: upper bound with nice rates of convergence
 – General case

• Application to logistic regression

• Hash kernels:
 – Sparse representation for feature vectors
 – Very simple, use two hash function (Can use one hash function...take least significant bit to define \(\xi \))
 – Quickly generate projection \(\varphi(\mathbf{x}) \)
 – Learn in projected space

• Multi-task learning:
 – Solve many related learning problems simultaneously
 – Very easy to implement with hash kernels
 – Significantly improve accuracy in some problems (if there is enough data from individual users)