Case Study 2: Document Retrieval

Review:
Mixtures of Gaussians

Machine Learning for Big Data
CSE547/STAT548, University of Washington
John Thickstun
April 26st, 2016
Some Data
Gaussian Mixture Model

- Most commonly used mixture model
- Observations:
- Parameters:
- Cluster indicator:
- Per-cluster likelihood:
- Ex. $z^i =$ country of origin, $x^i =$ height of i^{th} person
 - k^{th} mixture component = distribution of heights in country k
Generative Model

• We can think of *sampling* observations from the model

• For each observation \(i \),
 – Sample a cluster assignment
 – Sample the observation from the selected Gaussian
Also Useful for Density Estimation

Contour Plot of Joint Density
Density as Mixture of Gaussians

- Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians

Contour Plot of Joint Density
Density as Mixture of Gaussians

- Approximate density with a mixture of Gaussians

\[p(x^i \mid \pi, \mu, \Sigma) = \]

Mixture of 3 Gaussians
Summary of GMM Components

- Observations: $x_i \in \mathbb{R}^d, \quad i = 1, 2, \ldots, N$
- Hidden cluster labels: $z_i \in \{1, 2, \ldots, K\}, \quad i = 1, 2, \ldots, N$
- Hidden mixture means: $\mu_k \in \mathbb{R}^d, \quad k = 1, 2, \ldots, K$
- Hidden mixture covariances: $\Sigma_k \in \mathbb{R}^{d \times d}, \quad k = 1, 2, \ldots, K$
- Hidden mixture probabilities: $\pi_k, \quad \sum_{k=1}^{K} \pi_k = 1$

Gaussian mixture marginal and conditional likelihood:

$$p(x_i \mid \pi, \mu, \Sigma) = \sum_{z_i=1}^{K} \pi_{z_i} \mathcal{N}(x_i \mid \mu_{z_i}, \Sigma_{z_i})$$

$$p(x_i \mid z_i, \pi, \mu, \Sigma) = \mathcal{N}(x_i \mid \mu_{z_i}, \Sigma_{z_i})$$
Case Study 2: Document Retrieval

Application to Document Modeling

Machine Learning for Big Data
CSE547/STAT548, University of Washington
John Thickstun
April 26th, 2016
Task 2: Cluster Documents

- Now:
 - Cluster documents based on topic
Bag of words model

document d
A Generative Model

- Documents:
- Associated topics:
- Parameters: \(\theta = \{\pi, \beta\} \)
A Generative Model

- Documents: x^1, \ldots, x^D
- Associated topics: z^1, \ldots, z^D
- Parameters: $\theta = \{\pi, \beta\}$
- Generative model:
Form of Likelihood

- Conditioned on topic...

\[p(x^d \mid z^d, \beta) = \]

- Marginalizing latent topic assignment:

\[p(x^d \mid \beta, \pi) = \]
Case Study 2: Document Retrieval

Review:
EM Algorithm
Learning Model Parameters

- Want to learn model parameters

Mixture of 3 Gaussians

Our actual observations
ML Estimate of Mixture Model Params

- Log likelihood

\[L_x(\theta) \triangleq \log p(\{x^i\} \mid \theta) = \sum_i \log \sum_{z^i} p(x^i, z^i \mid \theta) \]

- Want ML estimate

\[\hat{\theta}^{ML} = \]

- Assume exponential family

\[p(x, z \mid \theta) = \frac{1}{Z(\theta)} e^{\theta^t \phi(x, z)} \]

\[L_x(\theta) = \]

- Neither convex nor concave and local optima
Complete Data

- Imagine we have an assignment of each x^i to a cluster.
Cluster Responsibilities

• We must infer the cluster assignments from the observations

Posterior probabilities of assignments to each cluster *given* model parameters:

\[r_{ik} = p(z^i = k \mid x^i, \pi, \phi) = \]
Iterative Algorithm

Motivates a coordinate ascent-like algorithm:
1. Infer missing values z^i given estimate of parameters $\hat{\Theta}$
2. Optimize parameters to produce new $\hat{\Theta}$ given “filled in” data z^i
3. Repeat

Example: MoG (derivation soon... + HW)
1. Infer “responsibilities”

$$r_{ik} = p(z^i = k \mid x^i, \hat{\Theta}^{(t-1)}) =$$

2. Optimize parameters

max w.r.t. π_k:

max w.r.t. ϕ_k:
Gaussian Mixture Example: Start
After first iteration
After 2nd iteration
After 4th iteration
After 6th iteration
After 20th iteration
More broadly applicable than just to mixture models considered so far

Model:
- \(x \) observable – “incomplete” data
- \(y \) not (fully) observable – “complete” data
- \(\theta \) parameters

Interested in maximizing (wrt \(\theta \)):

\[
p(x \mid \theta) = \sum_y p(x, y \mid \theta)
\]

Special case:

\[
x = g(y)
\]
EM Algorithm

- Initial guess:
- Estimate at iteration t:
 - **E-Step**
 - Compute
 - **M-Step**
 - Compute
Example – Mixture Models

- **E-Step** Compute \(U(\theta, \hat{\theta}^{(t)}) = E[\log p(y \mid \theta) \mid x, \hat{\theta}^{(t)}] \)

- **M-Step** Compute \(\hat{\theta}^{(t+1)} = \arg \max_\theta U(\theta, \hat{\theta}^{(t)}) \)

Consider \(y^i = \{z^i, x^i\} \) i.i.d.

\[
p(x^i, z^i \mid \theta) = \pi_{z^i} p(x^i \mid \phi_{z^i}) =
\]

\[
E_{q_t}[\log p(y \mid \theta)] = \sum_i E_{q_t}[\log p(x^i, z^i \mid \theta)] =
\]
Initialization

In mixture model case where \(y^i = \{ z^i, x^i \} \), there are many ways to initialize the EM algorithm.

Examples:

- Choose K observations at random to define each cluster. Assign other observations to the nearest “centriod” to form initial parameter estimates.
- Pick the centers sequentially to provide good coverage of data.
- Grow mixture model by splitting (and sometimes removing) clusters until K clusters are formed.

Can be quite important to convergence rates in practice.
What you need to know

• Mixture model formulation
 – Generative model
 – Likelihood

• Expectation Maximization (EM) Algorithm
 – Derivation
 – Concept of non-decreasing log likelihood
 – Application to standard mixture models
Case Study 2: Document Retrieval

Review:
Connection to k-means
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it’s closest to.
4. Each Center finds the centroid of the points it owns
K-means

- Randomly initialize k centers
 \[\mu^{(0)} = \mu_1^{(0)}, \ldots, \mu_k^{(0)} \]

- **Classify**: Assign each point $j \in \{1, \ldots, N\}$ to nearest center:
 \[z^j \leftarrow \arg \min_i \| \mu_i - x^j \|_2^2 \]

- **Recenter**: μ_i becomes centroid of its point:
 \[\mu_i^{(t+1)} \leftarrow \arg \min_{\mu} \sum_{j: z^j = i} \| \mu - x^j \|_2^2 \]

 - Equivalent to $\mu_i \leftarrow$ average of its points!
Special Case: Spherical Gaussians + hard assignments

If \(P(X|z=k) \) is spherical, with same \(\sigma \) for all classes:

\[
P(z^i = k, x^i) = \frac{1}{(2\pi)^{d/2} \lVert k \rVert^{1/2}} \exp \left(\frac{1}{2} (x^i_k)^T (x^i_k) P(z^i = k) \right)
\]

- If \(P(X|z=k) \) is spherical, with same \(\sigma \) for all classes:
 \[
P(x^i | z^i = k) \mu \exp \left(\frac{1}{2} \lVert x^i_k \rVert^2 \right)
\]
- Then, compare EM objective with k-means: