Machine Learning for Big Data
(CSE 547 / STAT 548)

(Or how to do really kickass research in the age of big data)
Course Staff

Instructor:
• Sham Kakade

TAs:
• Yao Lu
• John Thickstun
What is the course about?
Course Structure

• 5 “case studies”
 – Estimating Click Probabilities
 – Document Retrieval
 – fMRI Prediction
 – Collaborative Filtering
 – Document Mixed Membership Modeling
• Not comprehensive, but a sample of tasks and associated solution methods
• Methods broadly applicable beyond these case studies
1. Estimating Click Probabilities

- **Goal**: Predict whether a person clicks on an ad
- **Basic method**: logistic regression, online learning
1. Estimating Click Probabilities

- **Challenge I:** Overfitting, high-dimensional feature space
- **Advanced method:** L2 regularization, hashing
1. Estimating Click Probabilities

- **Challenge II:** Dimension of feature space changes
 - New word, new user attribute, etc.
- **Advanced method:** sketching, hashing
2. Document Retrieval

- **Goal:** Retrieve documents of interest
- **Methods:** fast K-NN, k-means, mixture models, Hadoop
3. fMRI Prediction

- **Goal:** Predict word probability from fMRI image
- **Challenge:** $p >> n$ (feature dimension $>>$ sample size)
- **Methods:** L1 regularization (LASSO), parallel learning
3. fMRI Prediction

- **Goal:** Predict fMRI image for given stimulus
- **Challenge:** zero shot learning (generalization)
- **Methods:** features of words, Mechanical Turk, graphical LASSO
4. Collaborative Filtering

- **Goal:** Find movies of interest to a user based on movies watched by the user and others
- **Methods:** matrix factorization, latent factor models, GraphLab
What do I recommend???
4. Collaborative Filtering

- **Challenge**: Cold-start problem (new movie or user)
- **Methods**: use features of movie/user
5. Document Mixed Membership

Challenge: Document may belong to multiple clusters

Methods: mixed membership models (e.g., LDA), distributed Gibbs, stochastic variational inference
Scalability

- Throughout case studies, introduce notions of parallel learning and distributed computations
Assumed Background

Official Prereq (strict): CSE 546 or STAT 535

Specific topics:
• Linear and logistic regression, ridge regression, LASSO
• Basic optimization (e.g., gradient descent, SGD)
• Perceptron algorithm
• K-NN, k-means, EM algorithm

Comfortable with:
• Java or Python
• Probabilistic and statistical reasoning

Computational and mathematical maturity
LOGISTICS

How is the course going to operate?
Website and Catalyst

• Course website:
 courses.cs.washington.edu/courses/cse547/16sp/index.html

• Canvas:
 – Used for all discussions
 – Post all questions there (unless personal)
 – Homework collection
 – Personal: cse547-instructors@cs.washington.edu
Reading

• No req’d textbook, but background reading in:
 “Machine Learning: A Probabilistic Perspective”
 Kevin P. Murphy

• Readings will be from papers linked to on course website

• Please do reading before lecture on topic
Homework

• 4 HWs, approx one for each case study
• Collaboration allowed, but write-ups and coding must be done individually
• You must submit your code.
• On due date, due at beginning of class time
• Allowed 2 “late days” for entire quarter
• YOU MUST SUBMIT ALL HW TO PASS THE COURSE (EVEN IT IS FOR 0 CREDIT)
• 3rd assignment must be completed individually
 → “Midterm”
Project

• Individual, or teams of two
• New work, but can be connected to research
• Schedule:
 – Proposal (1 page) – April 19
 – Progress report (3 pages) – May 12
 – Poster presentation –
 Thursday, June 2, 9:00-11:00am (??)
 – Final report (8 pages, NIPS format) – June 7
Grading

• HWs 1, 2, 4 (15% each)
• HW 3 (20%) – midterm exam
• Final project (35%)

• GRADING QUESTIONS: All regrading/policy change questions must be requested by email at cse547-instructors@cs.washington.edu. All in personal discussions (for TAs/instructors) are limited to knowledge based questions. Regrading may result in any part of the HW set going up or down.
Support/Resources

• Office Hours
 – TBD
• Discussion Board
Conclusion

• I like Big Data and I cannot lie

[INSERT SONG HERE]

Or, let’s just carry on with the first lecture...