Case Study 1: Estimating Click Probabilities

Intro
Logistic Regression
Gradient Descent + SGD

Machine Learning for Big Data
CSE547/STAT548, University of Washington
Emily Fox
March 31, 2015

Ad Placement Strategies

• Companies bid on ad prices

• Which ad wins? [many simplifications here]
 – Naively:
 – But:
 – Instead:

©Emily Fox 2015
Key Task: Estimating Click Probabilities

- What is the probability that user i will click on ad j?

- Not important just for ads:
 - Optimize search results
 - Suggest news articles
 - Recommend products

- Methods much more general, useful for:
 - Classification
 - Regression
 - Density estimation

Learning Problem for Click Prediction

- Prediction task:

- Features:

- Data:
 - Batch:
 - Online:

- Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision trees, boosting, ...)
 - Focus on logistic regression; captures main concepts, ideas generalize to other approaches
Logistic Regression

- Learn $P(Y|X)$ directly
 - Assume a particular functional form
 - Sigmoid applied to a linear function of the data:

 $$P(Y = 0|X,W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Features can be discrete or continuous!

Very convenient!

$$P(Y = 0 | X = <X_1, ..., X_n>) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\ln \frac{P(Y = 1 | X)}{P(Y = 0 | X)} = w_0 + \sum_i w_i X_i$$
Digression: Logistic regression more generally

- Logistic regression in more general case, where Y in $\{y_1, \ldots, y_R\}$

For $k < R$

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{n} w_{ki}X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)}$$

For $k = R$ (normalization, so no weights for this class)

$$P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)}$$

Features can be discrete or continuous!

Loss function: Conditional Likelihood

- Have a bunch of iid data of the form:

- Discriminative (logistic regression) loss function:

 Conditional Data Likelihood

 $$\ln P(D_Y | D_X, w) = \sum_{j=1}^{N} \ln P(y^j | x^j, w)$$
Expressing Conditional Log Likelihood

\[l(w) \equiv \sum_j \ln P(y^j|x^j, w) \]

\[P(Y = 0|X, w) = \frac{1}{1 + \exp(w_0 + \sum_i w_i x_i)} \]

\[P(Y = 1|X, w) = \frac{\exp(w_0 + \sum_i w_i x_i)}{1 + \exp(w_0 + \sum_i w_i x_i)} \]

\[\ell(w) = \sum_j y^j \ln P(Y = 1|x^j, w) + (1 - y^j) \ln P(Y = 0|x^j, w) \]

\[= \sum_j y^j (w_0 + \sum_{i=1}^d w_i x_i^j) - \ln \left(1 + \exp(w_0 + \sum_{i=1}^d w_i x_i^j) \right) \]

Maximizing Conditional Log Likelihood

\[l(w) \equiv \ln \prod_j P(y^j|x^j, w) \]

\[= \sum_j y^j (w_0 + \sum_{i=1}^d w_i x_i^j) - \ln \left(1 + \exp(w_0 + \sum_{i=1}^d w_i x_i^j) \right) \]

Good news: \(l(w) \) is concave function of \(w \), no local optima problems

Bad news: no closed-form solution to maximize \(l(w) \)

Good news: concave functions easy to optimize
Optimizing concave function —
Gradient ascent

- Conditional likelihood for logistic regression is concave
- Find optimum with gradient ascent

Gradient:
\[\nabla_w l(w) = \left[\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_n} \right]^t \]

Update rule:
\[\Delta w = \eta \nabla_w l(w) \]
\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(w)}{\partial w_i} \]

- Gradient ascent is simplest of optimization approaches
 - e.g., Conjugate gradient ascent much better (see reading)

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < \(\varepsilon \)

\[w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y_j - \hat{P}(Y_j = 1 \mid x_j, w)] \]

For \(i = 1, \ldots, d, \)

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_{ij} [y_j - \hat{P}(Y_j = 1 \mid x_j, w)] \]

repeat
Regularized Conditional Log Likelihood

- If data are linearly separable, weights go to infinity
- Leads to overfitting → Penalize large weights

- Add regularization penalty, e.g., L_2:
 \[
 \ell(w) = \ln \prod_j P(y^j | x^j, w)) - \frac{\lambda}{2} \|w\|_2^2
 \]

- Practical note about w_0:

Standard v. Regularized Updates

- Maximum conditional likelihood estimate
 \[
 w^* = \arg \max_w \ln \left[\prod_{j=1}^N P(y^j | x^j, w) \right]
 \]
 \[
 w_i^{(t+1)} = w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 | x^j, w)]
 \]

- Regularized maximum conditional likelihood estimate
 \[
 w^* = \arg \max_w \ln \left[\prod_j P(y^j | x^j, w) \right] - \frac{\lambda}{2} \sum_{i>0} w_i^2
 \]
 \[
 w_i^{(t+1)} = w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 | x^j, w)] \right\}
 \]
Stopping criterion

\[\ell(w) = \ln \prod_{j} P(y^j | x^j, w) - \frac{\lambda}{2} \|w\|_2^2 \]

- Regularized logistic regression is strongly concave
 - Negative second derivative bounded away from zero:

- Strong concavity (convexity) is super helpful!!
- For example, for strongly concave \(l(w) \):

\[\ell(w^*) - \ell(w) \leq \frac{1}{2\lambda} \|\nabla \ell(w)\|_2^2 \]

Convergence rates for gradient descent/ascent

- Number of iterations to get to accuracy

\[\ell(w^*) - \ell(w) \leq \epsilon \]

- If func Lipschitz: \(O(1/\epsilon^2) \)

- If gradient of func Lipschitz: \(O(1/\epsilon) \)

- If func is strongly convex: \(O(\ln(1/\epsilon)) \)
Challenge 1: Complexity of computing gradients

• What’s the cost of a gradient update step for LR???

\[
w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left[-\lambda w_i^{(t)} + \sum_j x_i^j [y_j - \hat{P}(Y^j = 1 | x_j^{(b)}, w)] \right]
\]

Challenge 2: Data is streaming

• Assumption thus far: **Batch data**

• But, click prediction is a streaming data task:
 - User enters query, and ad must be selected:
 • Observe \(x_j \), and must predict \(y_j \)
 - User either clicks or doesn’t click on ad:
 • Label \(y_j \) is revealed afterwards
 - Google gets a reward if user clicks on ad
 - Weights must be updated for next time:
Learning Problems as Expectations

• Minimizing loss in training data:
 – Given dataset:
 • Sampled iid from some distribution \(p(x) \) on features:
 – Loss function, e.g., hinge loss, logistic loss, ...
 – We often minimize loss in training data:
 \[
 \ell_D(w) = \frac{1}{N} \sum_{j=1}^{N} \ell(w, x^j)
 \]

• However, we should really minimize expected loss on all data:
 \[
 \ell(w) = E_x [\ell(w, x)] = \int p(x) \ell(w, x) dx
 \]

• So, we are approximating the integral by the average on the training data

Gradient Ascent in Terms of Expectations

• "True" objective function:
 \[
 \ell(w) = E_x [\ell(w, x)] = \int p(x) \ell(w, x) dx
 \]

• Taking the gradient:

• "True" gradient ascent rule:

• How do we estimate expected gradient?
SGD: Stochastic Gradient Ascent (or Descent)

- “True” gradient: $\nabla \ell (w) = \mathbb{E}_x [\nabla \ell (w, x)]$
- Sample based approximation:

- What if we estimate gradient with just one sample???
 - Unbiased estimate of gradient
 - Very noisy!
 - Called stochastic gradient ascent (or descent)
 - Among many other names
 - VERY useful in practice!!!

Stochastic Gradient Ascent: General Case

- Given a stochastic function of parameters:
 - Want to find maximum

- Start from $w^{(0)}$
- Repeat until convergence:
 - Get a sample data point x^t
 - Update parameters:

- Works in the online learning setting!
- Complexity of each gradient step is constant in number of examples!
- In general, step size changes with iterations
Stochastic Gradient Ascent for Logistic Regression

- Logistic loss as a stochastic function:
 \[E_x[\ell(w, x)] = E_x[\ln P(y|x, w) - \frac{\lambda}{2} \|w\|^2] \]

- Batch gradient ascent updates:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left(-\lambda w_i^{(t)} + \frac{1}{N} \sum_{j=1}^{N} x_i^{(j)} [y^{(j)} - P(Y = 1|x^{(j)}, w^{(t)})] \right) \]

- Stochastic gradient ascent updates:
 - Online setting:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left(-\lambda w_i^{(t)} + x_i^{(t)} [y^{(t)} - P(Y = 1|x^{(t)}, w^{(t)})] \right) \]

Convergence Rate of SGD

- Theorem:
 - (see Nemirovski et al ‘09 from readings)
 - Let \(f \) be a strongly convex stochastic function
 - Assume gradient of \(f \) is Lipschitz continuous and bounded

 - Then, for step sizes:

 - The expected loss decreases as \(O(1/t) \):
Convergence Rates for Gradient Descent/Ascent vs. SGD

- Number of iterations to get to accuracy
 \[\ell(w^*) - \ell(w) \leq \epsilon \]

- Gradient descent:
 - If func is strongly convex: \(O(\ln(1/\epsilon)) \) iterations

- Stochastic gradient descent:
 - If func is strongly convex: \(O(1/\epsilon) \) iterations

- Seems exponentially worse, but much more subtle:
 - Total running time, e.g., for logistic regression:
 - Gradient descent:
 - SGD:
 - SGD can win when we have a lot of data
 - See readings for more details

What you should know about Logistic Regression (LR) and Click Prediction

- Click prediction problem:
 - Estimate probability of clicking
 - Can be modeled as logistic regression

- Logistic regression model: Linear model

- Gradient ascent to optimize conditional likelihood

- Overfitting + regularization

- Regularized optimization
 - Convergence rates and stopping criterion

- Stochastic gradient ascent for large/streaming data
 - Convergence rates of SGD